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Abstract

This paper examines carbon stocks and their relative balance in terrestrial ecosystems simulated by Biome-BGC, LPJ, and

CASA in an ensemble model experiment conducted using the Terrestrial Observation and Prediction System. We

developed the Hierarchical Framework for Diagnosing Ecosystem Models to separate the simulated biogeochemistry into

a cascade of functional tiers and examine their characteristics sequentially. The analyses indicate that the simulated

biomass is usually two to three times higher in Biome-BGC than LPJ or CASA. Such a discrepancy is mainly induced by

differences in model parameters and algorithms that regulate the rates of biomass turnover. The mean residence time of

biomass in Biome-BGC is estimated to be 40–80 years in temperate/moist climate regions, while it mostly varies between

5 and 30 years in CASA and LPJ. A large range of values is also found in the simulated soil carbon. The mean residence

time of soil carbon in Biome-BGC and LPJ is �200 years in cold regions, which decreases rapidly with increases of

temperature at a rate of �10 yr 1C�1. Because long-term soil carbon pool is not simulated in CASA, its corresponding

mean residence time is only about 10–20 years and less sensitive to temperature. Another key factor that influences the

carbon balance of the simulated ecosystem is disturbance caused by wildfire, for which the algorithms vary among the

models. Because fire emissions are balanced by net ecosystem production (NEP) at steady states, magnitudes, and spatial

patterns of NEP vary significantly as well. Slight carbon imbalance may be left by the spin-up algorithm of the models,

which adds uncertainty to the estimated carbon sources or sinks. Although these results are only drawn on the tested

model versions, the developed methodology has potential for other model exercises.
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Introduction

As vital scientific tools for investigating the terrestrial

carbon/water cycles, ecosystem models synthesize our

current understanding of how terrestrial ecosystems

function and how they interact with climate and other

environmental systems (Waring & Running, 1998). Yet

because ecosystems are highly complex, it is impossible

to include all component processes into a numerical

model and simplifications must be made one way or

another. Different simplification schemes often lead to

different model behaviors, generally referred to as

structural uncertainty. Inherently, structural uncertainty

cannot be evaluated by experiments that use one single

model; instead, experiments that use an ensemble of

multiple models, or multimodel ensemble (MME), must

be conducted (Tebaldi & Knutti, 2007). Ideally, if the

ensemble members are independent, their structural

uncertainties are expected to cancel each other, and

thus the combined results will be better than those of

individual member models. For this reason, MME ex-

periments are now widely accepted in carbon-cycle

studies Q2(VEMAP Members, 1995; Cramer et al., 1999,

2001; Sitch et al., 2008; Randerson et al., 2009).

Challenges; however, exist in how to evaluate and

combine ensemble model results. Although in general

models are equally valid in their algorithms and struc-

tures, they rarely perform equally well in all aspects.

Therefore, it is legitimate to screen outliers while

weighting more heavily models that produce more

realistic final estimates. Model outputs ultimately need

to be evaluated against certain reference (usually
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observation-based) datasets. For instance, Randerson

et al. (2009) presented a framework to evaluate simu-

lated terrestrial biogeochemistry in the Carbon-Land

Model Intercomparison Project (C-LAMP), in which

the outputs of ecosystem models are compared with

satellite datasets [leaf area index (LAI) and net primary

production (NPP)], flux tower measurements (carbon/

energy fluxes), and some other data sources. However,

this approach is not problem-free: there are measure-

ment uncertainties and scale mismatch issues with the

flux tower data (Baldocchi, 2003), while satellite pro-

ducts of LAI and NPP are strictly not observations but

model results. Also, since numerical parameter optimi-

zation is now a common practice in ecosystem model

applications (Raupach et al., 2005), there are potential

risks that the models may be ‘tuned’ to some of the

reference datasets. As such, a good match between a

model and the reference data does not necessarily mean

that the model will perform well in other regions or in

other aspects, where it may not be well constrained.

This study proposes the Hierarchical Framework for

Diagnosing Ecosystem Models (HFDEM) as an alter-

native approach to analyze and evaluate uncertainties

of ecosystem models in MME experiments. Originally

developed from our analysis of Biome-BGC (Wang et al.,

2009), HFDEM decomposes the simulated biogeochem-

istry into a cascade of three functional tiers and examine

them sequentially. The first tier analyzes the gross and

net primary production (GPP/NPP) – the influx of

carbon into the ecosystem – by checking their relation-

ships with major climate drivers as well as vegetation

leaf area. The second tier analyzes how carbon is

allocated into different vegetation components and

how biomass is accumulated through the balance be-

tween primary production and biomass turnover. The

third tier analyzes the soil carbon balance between the

influx from litter fall and the effluxes generated by

heterotrophic respiration (HR). As such, HFDEM covers

most important aspects of the simulated carbon cycle.

Because the internal logic of the models is simplified

with this framework, it not only helps evaluate struc-

tural differences between ecosystem models, but also

how these differences originate.

We applied HFDEM to analyze and evaluate uncer-

tainties among four public-domain ecosystem models

in an MME experiment conducted using the Terrestrial

Observation and Prediction System (TOPS; Nemani

et al., 2009). The results are reported in a pair of papers:

the companion paper (Wang et al., 2010; hereafter re-

ferred as Part 1) describes the experimental setup, the

developed methodology, and reports the results cen-

tered on the primary production; this paper focuses on

the simulated carbon pools [biomass and soil organic

matters (SOM)] as well as the net ecosystem exchange

(NEE). Below, we give a brief introduction to the model

experiment and summarize the key findings of the

companion paper.

Model experiment setup

We set up our model experiment with the TOPS, a data

and modeling system developed at NASA Ames Re-

search Center to perform ecological monitoring/fore-

casting and related research (Nemani et al., 2009). TOPS

integrates various datasets from different sources, pro-

cesses them into compatible formats, and uses them to

drive application models. One of the key components of

TOPS, the Surface Observation and Gridding System

(SOGS), ingests daily meteorological observations from

station networks and interpolates them to spatially

continuous grids using the algorithms developed in

Thornton et al. (1997) and Jolly et al. (2005).

For this study, we used SOGS to generate daily

climate variables for the entire North American con-

tinent at 8 km resolution and for the time period of

1982–2006. The generated meteorological fields include

minimum/maximum temperatures, precipitation, va-

por pressure deficit, and incident solar radiation. The

source data of these variables were obtained from the

Global Summary of the Day (GSOD) and the Coopera-

tive Summary of the Day (TD3200), both archived at the

National Climatic Data Center (NCDC). When com-

bined, the two datasets have about 8000 reporting

stations over the continent at daily time steps. We used

the natural-neighbor procedure (Sibson, 1981) to inter-

polate the station data to the defined domain. Climatol-

ogies of the generated annual mean temperature and

total precipitation are shown in Part 1.

For models requiring satellite measured vegetation

indices, we used a satellite dataset of LAI developed by

Ganguly et al. (2008), which is generated from the

multidecade records of the Advanced Very High Reso-

lution Radiometer (AVHRR) sensors but with compar-

able quality to the Moderate Resolution Imaging

Spectroradiometer (MODIS) LAI products. The MODIS

land cover product (Friedl et al., 2002) is used to

describe the distribution of plant functional types

(PFTs). A global dataset of land surface parameters,

ECOCLIMAP (Masson et al., 2003), is used to specify

soil property (e.g., texture and depth) and other para-

meters (e.g., albedo).

Four public-domain ecosystem models are tested in

this experiment: Biome-BGC (Thornton et al., 2002), LPJ

(Sitch et al., 2003), CASA (Potter et al., 1993), and TOPS-

BGC (White & Nemani, 2004). These models cover a

range of different approaches of simulating ecological

processes and have different complexity. In particular,

Biome-BGC (version 4.1.2) and LPJ (version 3.1.1) fully
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simulate the carbon cycle of terrestrial ecosystems such

that they are able to project the states of ecosystems

solely from climate/environmental forcing and speci-

fied initial conditions. On the other hand, CASA (ver-

sion 4.2.2) and TOPS-BGC (version 1.0.2) do not

simulate but require external inputs (usually satellite

measured vegetation indices) to estimate structural

variables of the vegetation canopy (e.g., LAI or FPAR).

CASA does simulate the carbon flow of NPP into

various biomass compartments and then into litter/soil

pools, while TOPS-BGC does not. Characteristics of

these models are summarized in Table 1 of Part 1 (for

convenience, the same table is also given in the Sup-

porting Information).

Spin-up runs are used to bring the states of the above

models into equilibrium with the provided climate and

ancillary datasets. This stage of the model experiment

does not consider climate change scenarios; instead, a

constant level of atmospheric CO2 at 360 ppm is as-

sumed in all the spin-up runs. No disturbances are

externally specified in the simulations; however, fire is

internally simulated by Biome-BGC and LPJ. Using the

endpoints of the spin-up runs as initial conditions, we

ran the models for the climate years from 1982 to 2006

as the normal model experiment. Standard model out-

puts include monthly carbon fluxes (e.g., GPP, NPP,

NEP, and respiration), annual averaged carbon stocks

(biomass and soil carbon pools), and annual maximum

LAI (in the case of Biome-BGC and LPJ). For LPJ,

because it allows multiple PFTs in a grid cell, the results

represent the sum of all PFTs within the grid cells.

Method of diagnosis

In order to examine the internal logic of a model, we use

diagrams that relate the model outputs with their major

drivers. Because most ecological processes are driven by

climate, climate-domain diagrams of carbon fluxes are fre-

quently used in this study. A climate-domain diagram orga-

nizes model results by their climate context instead of their

geographic location. Owing to their dominant importance to

terrestrial ecosystems, temperature and precipitation are

usually chosen as the two dimensions to define the climate

domain (e.g., Churkina & Running, 1998; Schloss et al., 1999).

The climate domain adopted in this study spans across

annual mean temperature between �10 and 30 1C (as the x-

axis) and annual total precipitation from 0 to 2000 mm yr�1 (as

the y-axis; referenced as the T–P domain hereafter), which

covers the climate conditions of most vegetated areas over

North America. To generate 2D diagrams, we divide the T–P

domain into 100� 100 bins, each having a ‘climate resolution’

of 0.4 1C and 20 mm yr�1. Geographic grid cells are projected

into these climate bins according to their annual temperature

and precipitation. Because the geographically defined (lati-

tude–longitude) grid is not an equal-area projection, results

from grid cells are weighted by the cosine of their latitude

before they are summed or averaged in the T–P domain.

Additional features can be shown on the climate domain

diagrams. To facilitate analysis, a boundary [The ‘dry-moist’

boundary adopted here is based on the Köppen climate

classification system for the case where precipitation is evenly

distributed throughout the year (Strahler & Strahler, 1978). For

cases of precipitation concentrated in summer or winter, the

offset of the boundary changes to 280 or 0 mm, respectively.]

between dry and moist climate conditions is shown in the T–P

diagrams that is defined by the line of P 5 20T 1 140 (where T

is in 1C and P is in millimeters). Another line we found helpful

is the upward (‘lower/left-to-upper/right’) diagonal of the T–

P diagrams, defined by P 5 50T 1 500 (Fig. 1). As described in

Part 1, this line largely represents (local) optimal climate

conditions for vegetation primary production in our model

experiments. In addition, considering that forests and nonfor-

ests (grasses, crops, and shrubs) can have very different

characteristics, we sometimes show T–P diagrams for these

two types of PFTs separately.

In addition to the climate-domain diagrams, another tool

adopted in this study is the density scatter plot, which is

essentially a scatter plot with a color scheme to indicate the

density of the points. It is mainly used to illustrate the

relationship between two variables, for instance, leaf mass

and total biomass.

Results and discussion

In Part 1, we report analyses of the simulated primary

production (GPP/NPP) from the four tested models.

The results indicate an overall agreement among the

models. GPP tends to be optimal in climate regions

where the relationship between annual temperature

and precipitation is defined by P 5 50T 1 500. Along

this line (and for temperatures below 20 1C), GPP typi-

cally increases by �70 g C yr�1 m�2 for forests and

�30 g C yr�1 m�2 for nonforests per 1 1C increase in

temperature (or 50 mm increase in precipitation). These

broad patterns reflect the dominant control of climate

variables on ecosystem production. In addition, linear

relationships are found between annual GPP and an-

nual mean LAI, suggesting that the latter is a good

indicator of vegetation production. The patterns of NPP

largely follow those of GPP, and the ratio between the

two is close to 50% on average.

On the other hand, there are also considerable differ-

ences in the simulated GPP/NPP. For instance,

Biome-BGC has the highest GPP for forests but the

lowest GPP for nonforests among the tested models,

while the corresponding contrast in GPP is much

smaller in the other models. A major source of such

differences is traced back to how leaf area (LAI) is

simulated in the models. For Biome-BGC and LPJ, in

particular, carbon assimilated through photosynthesis

(NPP) is ultimately allocated to develop more leaves
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(and supporting tissues), and thus to enhance GPP/

NPP subsequently. This constructs a positive feedback

between primary production and leaf growth. Different

strategies to constrain such a feedback lead to distinc-

tive characteristics between the models (Part 1).

In this paper, we examine how carbon is allocated to

and accumulated in biomass and how it is cycled

through other carbon pools. Because TOPS-BGC does

not simulate these processes, our discussions will focus

on the remaining three models.

Biomass

The distributions of the simulated biomass in the T–P

domain are shown in Fig. 1. For each model, higher

biomass is generally found in climate regions along the

diagonal of P 5 50T 1 500, which represents favorable

climate conditions for primary production (Part 1). The

centers of the distributions are slightly shifted towards

regions with more rainfall, a result induced by the fact

that in moist environments forests are more predomi-

nant than nonforests. Comparing the distribution pat-

terns of biomass (Fig. 1) with those of NPP (Fig. S1)

indicates some broad similarities, reflecting the fact that

NPP is the input for biomass growth; however, such

correlation is not always strong, for the accumulation

process is also affected by other factors.

Despite the above stated similarities, however, the

most striking feature of Fig. 1 is the different (absolute)

magnitudes of biomass among the models. In particu-

lar, Biome-BGC is found to simulate much higher

biomass than LPJ and CASA. In temperate (0–20 1C)

and moist (P � 50T 1 500) climate regions, biomass

density in Biome-BGC is often above 30 kg C m�2 and

sometimes even as high as 50 kg C m�2; in contrast, the

biomass density in LPJ and CASA is mostly below

10 kg C m�2 and rarely reaches 15 kg C m�2. As such,

the overall biomass simulated by Biome-BGC is about

two to three times higher than that simulated by LPJ or

CASA. For the latter two models, though their overall

biomass magnitudes are similar, CASA simulates high-

er biomass in temperate regions while LPJ has higher

biomass in the tropics (Fig. 1).

Because NPP is largely comparable among the three

models (Fig. SA1), it is an unlikely cause for the

discrepancy in biomass. To verify this point, we calcu-

late ratios between biomass and corresponding annual

NPP for all vegetated grid cells and represent them in
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Fig. 1 Distributions of biomass (kg C m�2) in the T–P domain: (a) Biome-BGC; (b) LPJ; and (c) CASA.
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the T–P domain (Fig. 2). Distributions of the biomass-to-

NPP ratios have similar patterns as those of the bio-

mass, with (relatively) high ratios located along (and

above) P 5 50T 1 500. The magnitudes of the ratios are

also very different among the models. In temperate and

moist climate regions, the biomass-to-NPP ratios in

Biome-BGC are generally between 40 and 80; the corre-

sponding ratios in CASA range between 10 and 30,

while those in LPJ are between 5 and 15 (Fig. 2).

Therefore, when NPP is the same, Biome-BGC will have

biomass three or four times as much as in LPJ or CASA,

consistent with the results of Fig. 1.

The rate at which biomass is accumulated is deter-

mined by two factors: the gain of carbon as NPP and the

loss of carbon through tissue turnover or whole plant

mortality. At model equilibrium, the carbon influx must

be balanced with the efflux so that biomass becomes

steady. Therefore, steady-state NPP also reflects the

total turnover (including mortality) rate of biomass.

Following this line of thinking, the biomass-to-NPP

ratios of Fig. 2 indeed indicate the mean residence time

(or the ‘e-folding’ time) of biomass in these models. As

shown, the mean residence time of biomass in Biome-

BGC is mostly between 40 and 80 years in temperate/

moist climate regions, while it ranges from 10 to 30 and

5 to 15 years over the same regions in CASA and LPJ,

respectively. Because biomass persists for a much long-

er time in Biome-BGC, it can accumulate to a much

higher amount than in CASA or LPJ. Therefore, differ-

ences in model parameters and algorithms that regulate

tissue turnover rates and plant mortality are mainly

responsible for the discrepancies of biomass in Fig. 1.

Allometry

In addition to the amount of total biomass, we are also

interested in how biomass is allocated to different plant

components (e.g., leaves, stems, and roots). Because the

definition of vegetation components varies among dif-

ferent models, here we check one particular aspect of

the modeled allometry, namely, the relationship be-

tween the leaf and the whole plant. The results are

illustrated in density scatter plots in Fig. 3. The T–P

diagrams of annual maximum leaf mass (herein re-

ferred to as simply ‘leaf mass’ unless otherwise speci-

fied) are given in the Supporting Information (Fig. SA2).
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Fig. 2 Mean residence time of biomass (years), as estimated by the ratios between biomass and annual net primary production (NPP), in

the T–P domain: (a) Biome-BGC; (b) LPJ; and (c) CASA.
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Overall, all the models show strong linear relation-

ships between leaf mass and total biomass; in addition,

such relationships are often comprised of multiple

components that represent characteristics of different

vegetation types (PFTs). The scatter plot of Biome-BGC

(Fig. 3a) shows five nearly perfect linear components:

two of them have the plant-to-leaf biomass ratios (i.e.,

the slopes) around 400, two components have the ratios

around 100, and the last component has a ratio around

5. These components can be identified as representing

deciduous (broadleaf/needleleaf) forests, evergreen

(broadleaf/needleleaf) forests, and nonforest species

(grasses and shrubs), respectively. The scatter plot from

LPJ (Fig. 3b) shows two components: the one represent-

ing forests has a plant-to-leaf ratio about 50–100, and

the one for nonforests has a ratio about 2. The scatter

plot from CASA (Fig. 3c) shows four components that

have plant-to-leaf biomass ratios around 80, 30, 10, and

1, respectively. The first three components of CASA

represent forests in different regions: in particular, they

represent temperate deciduous forests (mainly east-

coast forests), tropical evergreen forests, and boreal

forests (including marine west-coast forests), respec-

tively. The last component represents herbaceous PFTs.

The range of leaf mass also varies between different

vegetation types and/or models. For instance, leaf mass

of deciduous forests in Biome-BGC is mostly below

0.12 kg C m�2, whereas leaf mass of evergreen forests

reaches 0.50 kg C m�2. This difference is induced by the

fact that the leaf mass density (leaf mass per unit area,

or LMA) of deciduous species is usually about 1/3–1/2

of the evergreen species Q3(White et al. 2000). When both

leaf mass and the plant-to-leaf biomass ratio are con-

sidered, therefore, the total biomass density of decid-

uous forests in Biome-BGC is comparable to that of

evergreen forests. In LPJ, the leaf mass of forests is

generally below 0.30 kg C m�2, which likely represents a

mixture of deciduous and evergreen species. Leaf mass

of nonforests in LPJ is mostly below 0.20 kg C m�2;

however, it can occasionally reach as high as 0.9 kg

C m�2. In CASA, leaf mass of deciduous forests and

evergreen forests is generally below 0.25 and

0.50 kg C m�2, respectively. However, the marine west-

coast forests (the third component shown in Fig. 3c) can
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CASA. The color scheme shows the number of samples represented by each pixel of the scatter plot (i.e., the density).
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have leaf mass as high as 1.0 kg C m�2, accounting for

about 10% of their total biomass. Also, although the leaf

mass of nonforests is under 0.5 kg C m�2 most of the

time, it reaches 1.0 kg C m�2 in some situations.

Characteristics visible in of Fig. 3 may be explained

by the biomass allocation and turnover algorithms of

the models. In Biome-BGC, the allometric allocation

scheme is defined by constant ratios relative to leaf

growth; and the tissue turnover rates and various

mortalities are also prescribed by constant parameters.

Therefore, at system equilibrium the mass balance

between leaf and other plant tissues is analytically

guaranteed to be linear (Wang et al., 2009). In LPJ, in

contrast, the allocation relationships are determined by

solving a set of joint scaling equations that relate leaf

area, canopy crown area, sapwood area, stem diameter,

and tree heights together. In particular, the model con-

strains the growth of trees by imposing an upper limit

on individual tree sizes or tree densities in a stand, and

plants are forced to shed tissues or to die when their

growth exceeds such thresholds. Such self-thinning

processes induce a dynamical component to the overall

biomass turnover rate of forests, and thus their corre-

sponding allometric relationships are more dispersed

(Fig. 3b). On the other hand, nonforests in LPJ are not

subjected to such self-thinning processes. Therefore,

their allometric relationships are more linear and their

leaf mass (and leaf area) can become much higher than

forests under certain conditions.

The carbon allocation algorithm in this version of

CASA is based on local availability of resources such

as light, water, and nutrients (Friedlingstein et al., 1999).

Our model experiment shows that the simulated east-

coast deciduous forests are mainly limited by solar

radiation, and thus more carbon is allocated to stem;

in contrast, the simulated boreal forests are mostly

limited by soil water and nutrients, and thus more

carbon is allocated to roots (Friedlingstein et al., 1999).

These environmental factors cause forests in these re-

gions to have different plant-to-leaf ratios (Fig. 3c).

Another feature of CASA is that its leaf carbon is

calculated independently from the input LAI. There-

fore, one cannot relate the two by the means of LMA.

For instance, marine west-coast forests can have leaf

mass up to 1.0 kg C m�2, twice as much as the peak leaf

mass of boreal forests (Fig. 3c and Fig. SA2c), even

though there is no substantial difference in LAI between

the two regions (Part 1).

Soil carbon

Because SOM undergoes chemical degradation at dif-

ferent rates, in ecosystem models it is generally repre-

sented by cascading carbon pools that may have

residence times ranging from a couple of years to

thousands of years (Parton et al., 1987). Because the

structure of SOM pools can vary significantly among

different models, we only analyze the total SOM as a

whole, referred to as ‘soil carbon’ for simplicity.

Figure 4 shows the T–P diagrams of the simulated soil

carbon. For all models, (relatively) high magnitudes of

soil carbon are found in cold and moist regions, reflect-

ing its dependence on biological (e.g., biomass) and

environmental factors (temperature, in particular). In

Biome-BGC and LPJ, soil carbon reaches 30–40 kg C m�2

in regions along P 5 50T 1 500 with T o5 1C; it rapidly

decreases to o10 kg C m�2 when T is above 10 1C (Fig.

4a and b). The link between soil carbon and biomass is

more evident in CASA, in which highest soil carbon are

found in temperate regions with temperature around

10 1C and precipitation around 1400 mm yr�1 (Fig. 4c),

where biomass density is also the highest (Fig. 2c).

However, the highest magnitude of soil carbon in CASA

is only about 10 kg C m�2, remarkably lower than that of

Biome-BGC and LPJ.

Because NPP approximates the rate of litter genera-

tion at system equilibrium, we calculate the mass ratios

between soil carbon and NPP in order to separate the

influences of environmental factors on SOM dynamics

from those of litter (Fig. 5). As in the case of biomass-to-

NPP ratios, the SOM-to-NPP ratios also reflect the mean

residence time of soil carbon in corresponding climate

conditions. As shown, the SOM-to-NPP ratios in Biome-

BGC and LPJ reach as high as 150–200 when T is below

�5 1C, but become mostly below 20 when T is above

10 1C. The changes of the ratios (as indicated by the

contour lines) are almost perpendicular to the axis of

temperature, further confirming the dominant regula-

tion of temperature on SOM decomposition. In these

two models, therefore, organic matter can reside in the

soil for centuries in cold climate regions, but it only

takes a couple of decades for it to decompose in

temperate/warm regions; the gradient (related to tem-

perature) of the mean residence time of soil carbon is

about �10 yr 1C�1 on average.

In contrast to Biome-BGC and LPJ, the SOM-to-NPP

ratios in CASA range between 10 and 20 in regions

where T is between �10 and 5 1C; they decrease to

below 10 when T is above 10 1C. Therefore, the mean

residence time of soil carbon in CASA is much shorter

than in the other two models. In addition, the gradient

of the residence time is also much lower (about

�1 yr 1C�1), suggesting the turnover of SOM is less

sensitive to variations in temperature (Fig. 5c).

The above discrepancy between CASA and the other

two models mainly reflects their different strategies in

modeling soil carbon processes. In particular, soil carbon

pools in CASA are only designed to describe SOM in the
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upper 0.3 m of soil; the cycling of carbon in the deeper

soil is thus ignored (Potter et al., 1993). On the other hand,

both Biome-BGC and LPJ include the full set of SOM

pools (Thornton et al., 2002; Sitch et al., 2003). As such, soil

carbon simulated by CASA is not directly comparable to

that simulated by Biome-BGC and LPJ. Nevertheless, by

including CASA in the comparison, we simply want to

demonstrate that such model structural differences can

be captured by our diagnostic methods.

Fire emission and NEP

In ecosystem models, carbon fluxes released through

the degradation of litter and SOM are summed up as

HR, and the difference between NPP and HR represents

net ecosystem production (NEP). When there are no

other nonrespiratory CO2 fluxes (e.g., fire emissions)

simulated, NEP is the same as NEE but opposite in sign.

This corresponds to the case of CASA in our experi-

ment. In Biome-BGC and LPJ, on the other hand, fire is

internally simulated, and thus NEE is defined by fire

emissions minus NEP. At system equilibrium, the cli-

matology of annual NEE should be zero, and the

comparison of mean annual NEE among the models is

thus trivial. Instead, we briefly compare NEP and fire

emissions between Biome-BGC and LPJ.

Figure 6 shows the simulated fire emissions in the

T–P domain. For Biome-BGC, highest fire emissions are

found in temperate (0 1CoTo10 1C) and moist (above

P 5 50T 1 500) regions, where fire burns up 40–

60 g C m�2 yr�1; in the rest of the domain, they are

mostly 20–40 g C m�2 yr�1 along P 5 50T 1 500, but gra-

dually decrease to below 10 g C m�2 yr�1 in hot/dry or

cold/wet conditions that are unfavorable for vegetation

growth. Comparing the distribution patterns of fire

emissions (Fig. 6a) with those of biomass (Fig. 1a)

indicates a clear association between the two fields.

Indeed, Biome-BGC assumes that for each PFT, fire

occurs uniformly at a prescribed rate and with the same

severity (vegetation experiences complete mortality

when there is a fire). Therefore, fire emission in

Biome-BGC is proportional to the amount of biomass.

It can be inferred from Figs 1a and 6a that the rate of fire

in Biome-BGC is about once in a century on average –

note that the fire frequency can vary significantly be-

tween different PFTs. For nonforests like grasslands, for

instance, fire is much more frequent and occurs once in

a decade or so (Part 1).
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Fig. 4 Distributions of soil carbon (kg C m�2) in the T–P domain: (a) Biome-BGC; (b) LPJ; and (c) CASA.
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Compared with Biome-BGC, the fire algorithm in LPJ

is more complex and calculates the probability and the

extent of fire based on fuel load and litter moistureQ4

(Thonicke et al., 2001; Sitch et al., 2003). As a result,

climatic regulations of fire emissions are more evident

on the T–P diagram of LPJ (Fig. 6b). For instance,

fire emissions are mostly below 40 g C m�2 yr�1 above

the diagonal of P 5 50T 1 500; in contrast, they easily

exceed 40 g C m�2 yr�1 under the diagonal and become

dominantly 80–100 g C m�2 yr�1 when temperature is

above 20 1C. Therefore, the impact of fire on the carbon

cycle is proportionally much stronger in hot and (rela-

tively) dry regions. Because the biomass density (fuel

load) in LPJ is far less than in Biome-BGC (Fig. 1b), the

fact that fire emissions in LPJ are comparable to or even

higher than in Biome-BGC indicates that the fire rate in
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Fig. 5 Mean residence time of soil carbon (years), as estimated by ratios between soil carbon and annual mean net primary production

(NPP), in the T–P domain: (a) Biome-BGC; (b) LPJ; and (c) CASA.

Fig. 6 Annual fire emissions (g C m�2 yr�1) in the T–P domain: (a) Biome-BGC; (b) LPJ.
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LPJ is much higher than in Biome-BGC on average. In

regions where annual mean temperature is above 20 1C,

for instance, it may occur as frequently as once in every

5–10 years (Figs 1b and 6b).

Because both models are supposed to be at system

equilibrium, fire emissions should be balanced by NEP.

Two density scatter plots (Fig. 7) illustrate the balance

or lack thereof. For Biome-BGC (Fig. 7a), almost all the

points fall on the 1 : 1 line, indicating that the model

does reach its equilibrium at most grid cells. On the

other hand, the scatter plot for LPJ (Fig. 7b) is more

dispersed, and its center is slightly shifted towards

higher NEP than fire emissions. These features indicate

that the model has not strictly reached its equilibrium,

but is slightly sequestering carbon from the atmo-

sphere. Note that this residual imbalance exists after

the model is spun-up for one thousand more climate

years than recommended by the default model settings

(Part 1). It suggests that the spin-up algorithm of LPJ

may need to be strengthened. At the same time, users of

other models should also be aware of this issue, because

it adds additional uncertainties to the simulated NEE.

It should be recognized that the results presented in

this study are only drawn on our experiment of the

tested model versions, and thus may not reflect the

latest development of these models. Also, the tested

model parameters were not calibrated particularly for

applications in the experiment domain. Therefore, these

results do not reflect the optimal performance and skills

of these models in simulating carbon dynamics over

North America.

Conclusions

This study reports results from an MME experiment

designed to diagnose and assess structural uncertainties

among terrestrial ecosystem models. The experiment

was conducted under the TOPS, and the tested models

include public versions of Biome-BGC, LPJ, TOPS-BGC,

and CASA, all driven by gridded climate fields gener-

ated from observations of weather-station networks.

To systematically analyze the outputs from the model

experiments, we developed a diagnostic framework, the

HDFEMs, which breaks the simulated carbon cycle into

three functional tiers (i.e., primary production, biomass,

and soil carbon pools) and examines them sequentially.

The results of the analysis are reported in two parts.

This paper, being the second part, examines how carbon

is allocated and accumulated in biomass and how it is

cycled through soil carbon pools.

Comparing biomass simulated by the models indi-

cates some similarity in the distribution patterns but

highlights substantial differences in their magnitudes.

In particular, biomass simulated by Biome-BGC is

usually two to three times higher than that simulated

by LPJ or CASA, despite the fact that NPP is largely

comparable among the models. Such discrepant

biomass magnitudes are mainly caused by different

residence time of biomass in the models. For instance,

the mean residence time of biomass in Biome-BGC is

mostly 40–80 years in temperate/moist climate regions,

whereas those in CASA and LPJ range 5–30 years.

Therefore, biomass in Biome-BGC accumulates to

higher amounts.

In addition to the total magnitudes, we also examined

the allometric relationships of biomass in different plant

components. Overall, strong linear relationships are

found between leaf mass and total biomass, which are

often comprised of multiple components that represent

different vegetation types. However, the characteristics

of these relationships vary among the models. In

Biome-BGC, the relationships for all vegetation types
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Fig. 7 Density scatter plots between annual fire emissions and NEP: (a) Biome-BGC; (b) LPJ. The color scheme shows the number of

samples represented by each pixel of the scatter plot (i.e., the density).

10 W. WA N G et al.

r 2010 Blackwell Publishing Ltd, Global Change Biology, doi: 10.1111/j.1365-2486.2010.02315.x

GCB 2315

(B
W

U
K

 G
C

B
 2

31
5 

W
eb

pd
f:

=
08

/3
1/

20
10

 0
6:

06
:1

0 
12

53
76

8 
B

yt
es

 1
2 

PA
G

E
S 

n 
op

er
at

or
=

) 
8/

31
/2

01
0 

6:
08

:5
4 

PM



are strictly linear so that the knowledge of leaf mass can

be used to accurately estimate the total biomass (and

vice versa). In LPJ, the relationship for woody species

becomes more dispersed while it remains very linear

for nonwoody species. These different characteristics

reflect differences in model parameters and algorithms

to regulate carbon allocation and biomass turnover in

these models, as discussed in Part 1.

Similarly, a large range is found in the simulated soil

pools, where carbon stocks simulated by CASA are

significantly less than those of Biome-BGC and LPJ.

Also, such difference is mainly induced by differences

in dynamic characteristics of soil carbon pools. The

mean residence time of soil carbon in Biome-BGC and

LPJ is around 200 years in regions where annual mean

temperature is below �5 1C; it decreases with increases

in temperature at a rate of about �10 yr 1C�1 on aver-

age. In contrast, the mean residence time of soil carbon

in CASA is only about 10–20 years, which is also less

sensitive to changes in temperature. The reason for such

apparent discrepancy is that long-term soil carbon

pools are not simulated in CASA. We show that model

structural differences of this kind can be readily cap-

tured by the developed diagnosing framework.

Dynamic characteristics of carbon pools are deter-

mined by model parameters (e.g., turnover rates and

mortality) as well as ecological processes that regulate

these variables. For soil carbon pools, temperature ap-

pears to be the most important climate regulator in all the

models. For biomass; however, the regulating mechanism

differs significantly between models, as reflected in the

ratios between leaf mass and the total biomass of the

tested models. In Biome-BGC, carbon allocation and

turnover is based on prescribed allometric relationships

and is constrained solely by nitrogen availability; there-

fore, each PFT has an almost perfect linear relationship

between leaf mass and total biomass. In LPJ, on the other

hand, the turnover rates and mortality of forests are also

regulated by tree sizes and stand densities (e.g., the ‘self-

thinning’ process); therefore, the leaf-to-biomass ratios

are more dispersed in LPJ for forests. On the other hand,

because such a constraint is not imposed on nonforests in

LPJ, the relationship between leaf mass and biomass is

much more linear. For the same reason, leaf mass (and

leaf area) of nonforests in LPJ may grow far above those

of forests in some conditions.

Disturbances such as wildfire are a key factor that

influences the carbon balance of the simulated ecosystem.

Fire occurs uniformly in Biome-BGC with a prescribed

rate and a certain severity for each PFT; therefore, carbon

emissions from fires are largely proportional to the

simulated biomass. In contrast, fire frequency and fire

severity are modeled as functions of soil moisture and

biomass (the fuel load) in LPJ, and therefore, its fire

emissions are significantly higher in warm and dry

regions. When these models are in steady state, the

simulated fire emissions are supposed to be balanced

by NEP of the ecosystem. However, depending on how

the models are spun-up, there may be slight imbalance in

the models’ states. Such residual imbalance, if not ad-

dressed properly, introduces additional uncertainty to the

estimated carbon sources or sinks.

Overall, the results of this analysis indicate that the

tested models are more consistent in estimating primary

production than simulating biomass and soil carbon

pools. Growing observation networks and satellite sen-

sors allow for systematic measurements of photosyn-

thetic carbon fluxes and related climatic/ecological

variables and result in improved direct or indirect cali-

bration of the photosynthesis algorithms and parameters

in these models. On the other hand, consistent and

systematic observations of biomass and soil carbon stocks

are much harder to acquire, and our knowledge about the

regulating processes are poor. Therefore, it is not surpris-

ing that the models differ more in these aspects. How-

ever, the revealed large uncertainties also suggest that the

corresponding algorithms and the interactions among

them may not be sufficiently analyzed and tested in these

models. As such, they justify the necessity of a systematic

diagnostic framework like the one developed in this

study (i.e., HDFEM). Indeed, HDFEM can also be applied

to analyze observational datasets and thus facilitate mod-

el-data comparisons. We shall report the new develop-

ments of the analysis in future publications.
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Figure SA1. Annual mean NPP (g C m�2 yr�1) in the T-P
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