
Diagnosing and assessing uncertainties of terrestrial
ecosystem models in a multimodel ensemble experiment:
1. Primary production
W E I L E WA N G *w , J E N N I F E R D U N G A N w , H I R O F U M I H A S H I M O T O *w ,

A N D R E W R . M I C H A E L I S *w , C R I S T I N A M I L E S I *w , K A Z U H I T O I C H I I z and

R A M A K R I S H N A R . N E M A N I w
*California State University, Monterey Bay, Seaside, CA, USA, wNASA Ames Research Center, Moffett Field, CA 94035, USA,

zFaculty of Symbiotic Systems Science, Fukushima University, Japan

Abstract

We conducted an ensemble modeling exercise using the Terrestrial Observation and Prediction System (TOPS) to

evaluate sources of uncertainty in carbon flux estimates resulting from structural differences among ecosystem

models. The experiment ran public-domain versions of BIOME-BGC, LPJ, CASA, and TOPS-BGC over North America at 8 km

resolution and for the period of 1982–2006. We developed the Hierarchical Framework for Diagnosing Ecosystem

Models (HFDEM) to separate the simulated biogeochemistry into a cascade of three functional tiers and sequentially

examine their characteristics in climate (temperature–precipitation) and other spaces. Analysis of the simulated

annual gross primary production (GPP) in the climate domain indicates a general agreement among the models, all

showing optimal GPP in regions where the relationship between annual average temperature (T, 1C) and annual total

precipitation (P, mm) is defined by P 5 50T 1 500. However, differences in simulated GPP are identified in magnitudes

and distribution patterns. For forests, the GPP gradient along P 5 50T 1 500 ranges from �50 g C yr�1 m�2
1C�1

(CASA) to �125 g C yr�1 m�2
1C�1 (BIOME-BGC) in cold/temperate regions; for nonforests, the diversity among GPP

distributions is even larger. Positive linear relationships are found between annual GPP and annual mean leaf area

index (LAI) in all models. For BIOME-BGC and LPJ, such relationships lead to a positive feedback from LAI growth to

GPP enhancement. Different approaches to constrain this feedback lead to different sensitivity of the models to

disturbances such as fire, which contribute significantly to the diversity in GPP stated above. The ratios between

independently simulated NPP and GPP are close to 50% on average; however, their distribution patterns vary

significantly between models, reflecting the difficulties in estimating autotrophic respiration across various climate

regimes. Although these results are drawn from our experiments with the tested model versions, the developed

methodology has potential for other model exercises.
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Introduction

The rising concentration of CO2 (and other greenhouse

gases) in the atmosphere, induced mainly by anthro-

pogenic carbon emissions, represents a major threat to

the Earth’s climate system. Yet the experienced growth

of atmospheric CO2 does not reflect the full impacts of

human’s disturbance on the global carbon cycle, as half

of the emitted CO2 is sequestered by natural reservoirs

in the ocean and on the land (IPCC, 2007). Between 2000

and 2006, for instance, global anthropogenic carbon

emissions was about 9.1 Pg C yr�1 (petagrams of carbon

per year), while carbon uptake by the ocean and the

land was 2.2 and 2.8 Pg C yr�1, respectively (Canadell

et al., 2007). In North America, terrestrial ecosystems

alone sequestered 0.65 Pg C yr�1 during the same peri-

od, offsetting one-third of carbon emissions from fossil

fuel burning and cement manufacturing (Peters et al.,

2007).

Compared with their oceanic counterparts, terrestrial

carbon sinks have more uncertainties associated with

them (Houghton, 2007). Estimates from atmospheric

inversion studies (i.e., the ‘Top-Down’ approach) gen-

erally suggest that the major part of the carbon sink

(about 2.0 Pg C yr�1) is located in the northern hemi-

sphere (Tans et al., 1990; Rayner et al., 1999; Gurney et al.,

2002; Jacobson et al., 2007). However, estimates from

inventory data and satellite observations (i.e., the ‘Bot-

tom-Up’ approach) indicate the uptake by northern
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forests may only account for 0.7 Pg C yr�1 (Myneni et al.,

2001; Goodale et al., 2002; Potter et al., 2003). One

explanation for this discrepancy is that much of the

sink may be contributed by ecosystems other than

forests (Pacala et al., 2001), while other studies suggest

that carbon uptake by tropical forests may be under-

estimated (Nemani et al., 2003; Stephens et al., 2007). In

addition to the latitudinal discrepancy, uncertainties of

carbon budgets at regional scales are even larger (IPCC,

2007).

Critical scientific tools for investigating the terrestrial

carbon cycle are ecosystem models. They integrate the

understanding of ecological processes obtained from

local measurements and apply the knowledge to simu-

late ecosystem functions over broader regions. Simula-

tion results from ecosystem models also provide

important prior information for atmospheric inversion

experiments. Therefore, uncertainties in ecosystem

models have direct (in the ‘Bottom-Up’ approach) or

indirect (in the ‘Top-Down’ approach) implications for

the estimation of carbon fluxes and carbon stocks.

Endogenous uncertainties of ecosystem models come

from initial conditions, model parameters, and model

structures. The first two sources of uncertainty are well

recognized and routinely addressed in model experi-

ments (e.g., through model spin-up and model calibra-

tion). The last source of uncertainty, structural

uncertainty, arises from different representations of

ecological processes in different models. Because the

components of terrestrial ecosystems and the interac-

tions among them are complicated or not well under-

stood, simplifying assumptions must be made to

describe them in numerical models. Different modeling

strategies may adopt different simplifying assumptions,

leading to different model complexity and behavior.

In some simple cases (e.g., a particular aspect of the

ecosystem), structural differences of ecosystem models

may be examined by directly comparing their mathe-

matical formulation. For instance, Adams et al. (2004)

analyzed algorithms of net primary production (NPP) in

10 different models and characterized their functional

responses to major climate driver and environmental

variables (e.g., temperature, soil moisture, and etc.).

However, characteristics of isolated model components

do not fully reflect their functional behavior within the

coupled system, where feedbacks and interactions be-

tween the subsystems play a critical role. Mathematical

analysis of complicated systems is usually difficult, so

numerical experiments with multimodel ensemble

(MMEs) have become the main means to tackle the

problem. In general, an MME experiment runs a group

models with the same input data and under the same

initial/boundary conditions; the multimodel means are

often treated as the ‘best’ simulation results, and the

intermodel differences are used as a measure of the

structural uncertainty (Tebaldi & Knutti, 2007).

Following the successful example of the World Cli-

mate Research Programme’s Coupled Model Intercom-

parison Project for the International Panel on Climate

Change (IPCC), MME experiments are now broadly

adopted in carbon-cycle studies, such as the Atmo-

spheric Tracer Transport Model Intercomparison Project

(TransCom; Rayner & Law, 1995; Denning et al., 1999;

Gurney et al., 2004). For ecosystem models, in Q1particular,

previous major MME experiments include the Vegeta-

tion/Ecosystem Modeling and Analysis Project Q2(VE-

MAP; VEMAP Members, 1995), the Potsdam NPP

Model Intercomparison Project (Cramer et al., 1999),

and the Potsdam DGVM Intercomparison Project (Cra-

mer et al., 2001). These experiments utilized ensembles

of 6–17 ecosystem models to investigate contemporary

patterns of vegetation production and other important

carbon fluxes (e.g., NEE) in the United States and at

global scales, as well as their responses to future climate

change scenarios. Despite the general agreement in the

simulation results and the implied scientific significance

(e.g., see Schimel, 2007), large differences Q3among the

models were also revealed, for instance, in estimates of

contemporary global annual NPP (39.9–80.5 Pg C yr�1;

Cramer et al., 1999), or in the sensitivity of carbon

storage to future climate change in the United States

(�39 to 1 40%; VEMAP Members, 1995).

The large uncertainties found among ecosystem mod-

els highlight the necessity of systematically diagnosing

ensemble members in an MME experiment. On one

hand, models rarely perform equally well and it is

legitimate to weigh more heavily models that produce

more realistic estimates. On the other hand, it is also

important to gain understanding of the causes of the

intermodel discrepancies so that the member models

may be improved and the overall uncertainties may be

reduced in future model exercises.

Conventionally, ecosystem models are diagnosed by

comparisons between simulation outputs and certain

reference datasets. For instance, Randerson et al. (2009)

represented a framework to evaluate simulated terres-

trial biogeochemistry in the Carbon-Land Model Inter-

comparison Project (C-LAMP) using satellite datasets

[leaf area index (LAI) and NPP], flux tower measure-

ments (carbon/energy fluxes), and some other data

sources. However, this approach is not problem-free:

there are measurement uncertainties and scaling issues

with the flux tower data (Baldocchi, 2003), while satel-

lite products of LAI and NPP are strictly not observa-

tions but model results. Also, since numerical

parameter optimization is now a common practice in

ecosystem model applications Q4(Raupach et al., 2005),

there are potential risks that the models may be ‘tuned’
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with some of the reference datasets and thus the

assumption about the independence between the refer-

ence data and the testing samples is violated. Further-

more, simply comparing model outputs with reference

data does not necessarily indicate the reasons why they

agree (or do not agree) with each other.

In an effort to support the North America Carbon

Program (NACP) and by using the Terrestrial Observa-

tion and Prediction System (TOPS; Nemani et al., 2009),

we conducted an MME experiment that includes public

versions of the ecosystem models BIOME-BGC, LPJ, CASA,

and TOPS-BGC. We developed an alternative diagnostic

approach to systematically detect and evaluate structural

uncertainties among the tested models. This approach,

called as the Hierarchical Framework for Diagnosing

Ecosystem Models (HFDEM), tries to separate the simu-

lated biogeochemistry into a cascade of three functional

tiers and examine them sequentially. The first tier ana-

lyzes the primary production (GPP/NPP) by checking its

relationship with major climate drivers as well as vegeta-

tion leaf area. The second tier analyzes how carbon is

allocated into different vegetation components and how

biomass is accumulated through the balance between

primary production and biomass turnover. The third tier

analyzes the soil carbon balance between the influx from

litter fall and the effluxes generated by heterotrophic

respirations (HR). Because the framework simplifies the

internal logic of models, not only does it help evaluate

structural differences between ecosystem models, but

also how these differences originate.

We applied the diagnostic framework to analyze

structural uncertainties among the ecosystem models

tested in our MME experiment and report the results

here in two parts: the first part (i.e., this paper) intro-

duces the setup of the model experiment, describes the

development of methodology, and discusses the analy-

sis results centered on primary production. The second

partQ5 (i.e., the companion paper; Wang et al., 2010) will

focus on detecting and evaluating uncertainties in the

simulated carbon budgets.

Model experiment setup

We set up our model experiment with the TOPS. TOPS

is a data and modeling system developed for ecological

monitoring, forecasting, and related ecosystem analyses

(Nemani et al., 2009). It integrates ecosystem models

with meteorological records, climate model outputs,

satellite products, and various ancillary datasets from

different sources. TOPS also incorporates software tools

to process and manage these spatial–temporal datasets.

One of the key components of TOPS is the Surface

Observation and Gridding System (SOGS), which in-

gests daily observations of temperature, precipitation

and other fields from meteorological stations, and inter-

polates them to spatially continuous grids following the

algorithms developed in Thornton et al. (1997) and Jolly

et al. (2005). SOGS datasets are used to drive ecosystem

models integrated within TOPS. What follows is a

description of the datasets and models we used with

TOPS to construct our MME.

Datasets

The spatial domain of this model experiment covers the

entire North American continent at 8 km resolution and

the time period simulated is from 1982 to 2006. We used

SOGS to generate daily meteorological fields including

minimum/maximum temperatures, precipitation, vapor

pressure deficit, and incident solar radiation. The

input meteorological data were obtained from the Glo-

bal Summary of the Day (GSOD) and the Cooperative

Summary of the Day (TD3200), both archived at the

National Climatic Data Center (NCDC). GSOD is a

global set based on data exchanged under the World

Meteorological Organization (WMO) World Weather

Watch Program. It has about 2000 reporting stations

over North America, which is relatively sparse for

interpolating climate variables such as daily precipita-

tion over the whole continent. For this reason, we

combined GSOD with the TD3200 dataset. TD3200

consists of about 8500 reporting stations in the United

States, primarily from the National Weather Service

(NWS) cooperative station network and principal

climatological stations. Based on some informal

comparisons of interpolation procedures, we chose the

natural-neighbor procedure (Sibson, 1981) to interpo-

late the station data to the defined model domain

because it had the fewest obvious artifacts. As an

example, Fig. 1 shows the climatology of the generated

annual mean temperature and total precipitation.

For models requiring satellite measured vegetation

data, we used the LAI dataset developed by Ganguly

et al. (2008), which is generated from the multidecade

records of the Advanced Very High Resolution Radio-

meter (AVHRR) sensors but with comparable quality to

the Moderate Resolution Imaging Spectroradiometer

(MODIS) LAI Collection 5 products. The MODIS land

cover product (Friedl et al., 2002; Fig. 1c) is used to

describe the distribution of plant functional types

(PFTs). A global dataset of land surface parameters,

ECOCLIMAP (Masson et al., 2003), is used to specify

soil properties (e.g., texture and depth) and other para-

meters (e.g., albedo).

Ecosystem models

The architecture of TOPS provides a flexible interface

for ecosystem models to be integrated. Here, we present
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results from public versions of four process-based eco-

system models, including BIOME-BGC (Thornton et al.,

2002), LPJ (Sitch et al., 2003), CASA (Potter et al., 1993), and

TOPS-BGC (White & Nemani, 2004). These models cover a

range of different approaches to simulate ecological

processes and have different complexity. A brief intro-

duction to these models is given below, focusing on

carbon cycling aspects. Some of their characteristics,

and the associated major publications, are also summar-

ized in Table 1. These models were integrated in TOPS

for various other applications; as such, they are not

intentionally selected but happen to be the available

candidate models for this experiment.

BIOME-BGC (version 4.1.2) is an ecosystem model de-

signed to estimate fluxes of carbon, water, and nitrogen

in response to changes in climate and other environ-

mental forcing (Thornton et al., 2002). It incorporates all

the major components of the carbon cycle. The radiation

regime of canopy is computed by a two-big-leaf scheme

(which treats sunlit and shaded leaf area separately),

which is followed by the simulation of photosynthesis

or gross primary production (GPP) based on the Farqu-

har model (Farquhar et al., 1980). Maintenance respira-

tion is calculated based on tissue mass, nitrogen

content, and temperature, while growth respiration is

assumed as a constant proportion of carbon allocated to

growth. Allocation of carbon is made by prescribed

allometric relationships, and litter is produced as tis-

sues turn over normally or when plants die. Mortality,

due to age or induced by fire, occurs at prescribed rates

and is uniformly applied to the simulated plant (i.e., no

age structure of the plant is recorded). Dead tissues

degrade and move through a series of cascading litter/

soil pools, during which HR is estimated (Thornton

et al., 2002).

One important feature of BIOME-BGC is that the simu-

lated carbon cycle is tightly coupled with, or controlled

by, the nitrogen cycle of the ecosystem. Carbon can only

be allocated to growth when it is allowed by available

nitrogen, and otherwise the surplus carbon is simply

subtracted from the GPP. Therefore, GPP in BIOME-BGC is

retrospectively adjusted according to nitrogen availabil-

ity (Thornton et al., 2002; Wang et al., 2009). Finally, there

are six main PFTs defined in BIOME-BGC, including

various types of forests (e.g., needleleaf or broadleaf,

evergreen or deciduous), shrubs, and grassland/crop-

land. A land cover map is required to assign one of

those PFTs to each vegetated grid cell in the domain.
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Fig. 1. The domain of the model experiment: (a) annual mean surface temperature; (b) annual total precipitation; and (c) land cover

classification (MODIS). Forests on (c) are shown by green colors, whereas nonforests are shown in yellow/brown colors.

Table 1. Selected characteristics and attributes of models used in the MME

Biome-BGC LPJ TOPS-BGC CASA

Land cover Prescribed Simulated Prescribed Prescribed

LAI Simulated Simulated Prescribed Prescribed

Carbon pools Vegetation and soil Vegetation and soil None Vegetation and soil

GPP algorithm Farquhar Model Farquhar Model LUE 2�NPP

NPP algorithm GPP–AR GPP–AR 0.5�GPP LUE

NEE/HR

algorithm

NPP–HR; HR estimated

from soil pools

NPP–HR; HR estimated

from soil pools

NPP–HR; HR estimated

from base respiration

rates

NPP–HR; HR estimated

from soil pools

Dynamic nitrogen

cycle

Yes No No No

References Thornton et al. (2002) Sitch et al. (2003) Nemani et al. (2009) Potter et al. (1993)

GPP, gross primary production; LUE, light use efficiency; NPP, net primary production; AR, autotrophic respiration; HR,

heterotrophic respiration.

4 W. WA N G et al.
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LPJ (version 3.1.1) is a dynamic global vegetation

model (Sitch et al., 2003). The logic of LPJ is similar to

that of BIOME-BGC in many aspects of the modeled carbon

cycle, although the adopted technique details may be

different. For instance, the radiation regime in LPJ is

simulated in a one-big-leaf approach and photosynth-

esis is simulated based on a simplified, semiempirical

version of the Farquhar model (Collatz et al., 1991;

Haxeltine & Prentice, 1996). However, there are also

substantial differences in some basic strategies between

the two models. Unlike BIOME-BGC, LPJ does not empha-

size the regulation of nitrogen availability on carbon

allocation, but allows all available carbon to be used for

plant growth. Yet it constrains the accumulation of

biomass by implementing several scaling rules to reg-

ulate the size of individual trees and the density of

woody species within a grid cell. When the tree size or

tree density exceeds a certain threshold, a self-thinning

process is triggered that forces the tree to turn over

tissues or to die. Another key feature of LPJ is that it

intrinsically supports subgrid cell vegetation structures.

For this study, each grid cell in LPJ is treated as a stand

that can have as many as 10 PFTs. These PFTs compete

for the same natural resources (light, water, etc.) to

obtain a population advantage by gaining more NPP.

Therefore, LPJ does not need externally specified PFT

distributions in the domain.

CASA [version 4.2.2; CASA has several different ver-

sions since its original development in Potter et al.

(1993). The version used in this study is obtained from

the Carnegie Institution of Washington, which has a

structure close to the original model] is a classic eco-

system model that utilizes satellite measurements of

vegetation (Potter et al., 1993). Unlike BIOME-BGC or LPJ,

CASA does not simulate structural variables of the vege-

tation canopy (e.g., LAI or FPAR), but requires external

inputs (satellite-measured vegetation indices) to esti-

mate them and then to estimate the absorbed photo-

synthetic active radiation (APAR). It directly translates

APAR into biomass (NPP) based on the notion of light

use efficiency (LUE), which is a product of an optimal

efficiency and regulation functions of environmental

factors (e.g., temperature and water stress). The rest of

the carbon cycle in CASA is similar to BIOME-BGC or LPJ, as

it also simulates the carbon flow of NPP into various

biomass compartments, and then into litter/soil pools.

A few revisions were made to the CASA model in this

study. The original model requires NDVI as inputs to

estimate FPAR and LAI internally. However, when we

tested the model with AVHHR, GIMMS, NDVI (version

‘G’; Tucker et al., 2005) datasets, we found that the

internally estimated LAI was often saturated with the

maximum values allowed by the model. Accordingly,

we changed the model to directly take LAI as input, and

estimated FPAR using Beer’s law with an average

extinction coefficient of 0.5 (Woodward, 1987), which

is essentially the same scheme used in LPJ. These revi-

sions allow us to examine the model’s behavior in a

broader dynamical range.

TOPS-BGC [in previous literature, TOPS-BGC is sometimes

called as ‘TOPS’ for simplicity (e.g., White & Nemani,

2004). Here, ‘TOPS’ refers to the whole modeling system

instead of a particular model running under it] (version

1.0.2) is derived from BIOME-BGC by removing model

components dealing with dynamic carbon allocation

and the nitrogen cycle (White & Nemani, 2004). It

requires satellite measurement of LAI (and FPAR, if

available) as inputs, and estimates photosynthesis in a

LUE approach similar to the MODIS GPP algorithm

(Zhao et al., 2005; Heinsch et al., 2006). Efforts have been

made to improve the hydrological modules (Ichii et al.,

2008) and to refine the optimal LUE for different land

cover types (Yang et al., 2007). TOPS-BGC currently does

not simulate biomass or other carbon pools. Therefore,

it does not estimate autotrophic respiration (AR) inde-

pendently, but assumes NPP is half of GPP (Waring

et al., 1998). When a reference rate of HR is provided,

TOPS-BGC also has the capacity to estimate the variations

of HR under the regulations of soil temperature and soil

moisture. This approach of estimating HR is similar to

the scheme adopted in the Vegetation Photosynthesis

and Respiration Model (VPRM; Mahadevan et al., 2008).

Model experiment protocol

Before normal model simulations, spinup runs are

required to bring the states of the above models into

equilibrium with the provided climate and ancillary

datasets. This is generally accomplished by running

the models for many simulation years (in which the

climate data are recycled), yet different models may

have different spinup algorithms (e.g., Thornton &

Rosenbloom, 2005). BIOME-BGC implements a specific

procedure to check whether the simulated ecosystem

reaches its steady state at the end of the spinup run,

which takes about 2000 simulation years on average. By

default, LPJ runs for 1000 simulation years for the

spinup process; it also has a procedure to analytically

calculate the balance of soil carbon pools during the

process. However, we noticed that 1000 simulation

years were not long enough to bring the model into

steady state; therefore, the model was run for an addi-

tional 1000 simulation years. CASA does not have a

particular spinup procedure, but the model becomes

stable after 100 climate cycles (i.e., 2500 simulation

years). Finally, because TOPS-BGC has no carbon pools

simulated, it only needs to bring soil moisture to con-

temporary status, which usually takes one climate cycle
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(i.e., 25 simulation years). This stage of the model

experiment does not consider climate change scenarios;

a constant level of atmospheric CO2 at 360 ppm is

assumed in all the spinup runs. No disturbances are

externally specified in the simulations. Fire is internally

simulated by BIOME-BGC and LPJ.

With the endpoints of the spinup runs as initial

conditions, we ran the models for the climate years

from 1982 to 2006. Standard model outputs include

monthly carbon fluxes (e.g., GPP, NPP, NEP, and re-

spiration), monthly LAI (in the case of BIOME-BGC and

LPJ), and annual averaged carbon stocks (biomass and

soil carbon pools). For LPJ, results of a grid cell represent

the proportionally weighted sum of all PFTs within it.

We calculate the mean seasonal cycles of monthly

variables and annual averages of annual variables over

the simulation period.

Method of diagnosis

The basic idea of the HFDEM was developed from our

analysis of the BIOME-BGC model (Wang et al., 2009), and

was motivated by the fact that today’s ecosystem mod-

els are so sophisticated that their calibration and ana-

lysis have become a very difficult task. To address this

problem, a solution is to construct a model hierarchy by

sequentially removing functional components from the

original model (Held, 2005). Following this approach,

Wang et al. (2009) identified three key functional tiers in

BIOME-BGC, which include: (1) photosynthesis and eva-

potranspiration at the leaf level; (2) carbon (and nitro-

gen) allocation and respiration at the whole-plant level;

and (3) carbon/nitrogen cycles in litter/soil pools. A

model hierarchy was then developed and applied to

successfully calibrate BIOME-BGC at multiple Fluxnet sites

(Wang et al., 2009).

HFDEM applies the idea of Wang et al. (2009) to

examine biogeochemistry simulated by ecosystem mod-

els in a more general fashion. With a focus on the carbon

cycling, HFDEM first examines how carbon is assimi-

lated into the system (GPP) and how GPP is partitioned

into AR and net carbon gain (NPP). Next, it evaluates

how NPP is allocated into different vegetation tissues

and how biomass is accumulated. Finally, HFDEM

checks how carbon is stored in soil pools and the carbon

balance of the whole system.

For the purpose of diagnosis, it is not necessary to

derive analytical expressions for the developed model

hierarchies [as did in Wang et al. (2009)]. Instead,

HFDEM utilizes diagrams that relate model outputs

with their major drivers to help simplify the model

logic. Because most ecological processes are driven by

climate, climate-domain diagrams of carbon fluxes can

be used to good effect in this context. Climate-domain

diagrams organize model results by their climate con-

text instead of their geographic locations, which repre-

sent intrinsic characteristics of the models in a more

informative way than conventional geographic maps.

Owing to their dominant importance to terrestrial eco-

systems, temperature and precipitation are usually cho-

sen as the two dimensions to define the climate domain

(e.g., Churkina & Running, 1998; Schloss et al., 1999).

The climate domain adopted in this study spans

across annual mean temperature between �10 and

30 1C (as the x-axis) and across annual total precipita-

tion from 0 to 2000 mm yr�1 (as the y-axis; referenced as

the T–P domain hereafter). This domain covers climate

conditions of most vegetated areas over North America.

To generate 2D diagrams, we divide the T–P domain

into 100� 100 bins, each having a ‘climate resolution’ of

0.4 1C and 20 mm yr�1. Geographic grid cells are pro-

jected into these climate bins according to their annual

temperature and precipitation (as shown in Fig. 1).

Because the geographically defined (latitude–longitude)

grid is not an equal-area projection, results from grid

cells are weighted by the cosine of their latitude before

they are summed and averaged in the T–P domain. It

should be noted that the distributions of the grid cells in

the T–P domain are generally not homogeneous, and

thus results representing the climate bins may have

different sample sizes. However, because the total sam-

ple base is large (�480 000 vegetated grid cells), major

patterns on the T–P diagrams are generally supported

by sufficient samples and thus statistically meaningful.

Estimates of total GPP and NPP over the NACP domain

are summarized in Table 2.

As an example, Fig. 2 shows the density distributions

of vegetated grid cells for forests and nonforests, as

classified by the MODIS land cover map (Fig. 1c),

respectively, in the T–P domain. The distributions are

rather heterogeneous and the density of the grid cells

ranges from zero to over 200 in different climate re-

gions, rendered by different colors (from blue to red). To

facilitate the discussion, a boundary [The ‘dry–moist’

boundary adopted here is based on the Köppen climate

classification system for the case where precipitation is

evenly distributed throughout the year (Strahler &

Strahler, 1978). For cases of precipitation concentrated

in summer or winter, the offset of the boundary should

change from 140 to 280 mm or 0 mm, respectively]

between dry and moist climate conditions is shown in

the diagrams, which is defined by the line of

P 5 20T 1 140 (where T is in 1C and P is in millimeters).

In comparison, also shown is the upward (‘lower/left-

to-upper/right’) diagonal of the T–P diagrams, defined

by P 5 50T 1 500 (Fig. 2). In the discussions, we roughly

divide the climate domain along the temperature di-

mension in three main regions, referred to as ‘cold’
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(To5 1C), ‘warm’ (5 1CoTo20 1C), and ‘hot’ (T420 1C),

respectively.

As shown in Fig. 2a, forests are mostly distributed in

moist climate regions, with the distribution centers

largely aligned with P 5 50T 1 500. The highest density

of forests is found in the cold climate zone (around 0 1C

and 400 mm yr�1), contributed mainly by boreal forests.

The centers of distribution spread rather evenly over

regions where annual precipitation is between 1000 and

1500 mm yr�1 in the warm climate zone, corresponding

to eastern temperate forests. The hot climate zone

is mainly occupied by the tropical forests of

Central America. In addition to these major groups,

forests located in the cool (�5 1C) and very moist

(41500 mm yr�1) climate regions are dominated by

the marine west coast forests.

In contrast to forests, the distribution of nonforests is

shifted towards arid climate regimes, and is mostly

below the upward diagonal in warm and hot climate

zones (Fig. 2b). Three major centers of distribution can

be identified on the diagram: the first one is located in

the very lower-left corner (o�5 1C), which is contrib-

uted by subarctic shrubs; secondly, a broad band is

distributed close to the moist/arid boundary in the

warm climate zone, which reflects the grasslands on

the Great Plains and open shrubs over the North

American deserts; the third center, less intensive but

still recognizable, is located in warm and moist climate

zones (centered at 10 1C and 1000 mm yr�1) and is

mainly contributed by croplands (Fig. 2b).

Because forests and nonforests (e.g., shrubs and

grasses) have different characteristics, we may discuss

the two sets of results separately when it is necessary. In

these cases, we used the MODIS land cover map (Fig.

1c) to determine the vegetation type of grid cells (as in

Fig. 2). However, because vegetation distributions are

internally simulated and solely regulated by climate in

LPJ (see section on ‘Model experiment protocol’), they

essentially represent a scenario of ‘potential vegetation’,

which may be different from the classifications of the

MODIS land cover map. Such differences are generally

small for forests but more evident for nonforests. For

instance, because LPJ does not simulate human-induced

land use and land cover changes, a large portion of the

agricultural region in the mid-west of the continent (Fig.

1) is occupied by forests (Sitch et al., 2003). Therefore,

the above classification of nonforests essentially does

not apply to the results of LPJ. When necessary, we use

the term of ‘vegetation simulated in nonforest regions’

in the discussions to clarify the difference for LPJ.

In addition to the climate-domain diagrams, another

tool adopted in this study is density-scatter plots, which

are scatter plots with a color scheme indicating the

density of the points. It is used to illustrate the relation-

ship between two variables, for instance, GPP and LAI

(see section on ‘GPP vs. LAI’). To create the density-

scatter plots, we divide the ranges of the two variables

of interests (e.g., GPP and LAI) to 100 intervals along

the x- and the y-axis, which thus divides the plotting

area into 100� 100 bins. The number of points that fall

into a bin defines its density and is shown by a color.

Density-scatter plots are more suitable than traditional

scatter plots to illustrate the distribution of a large

number of points (�105 in our case) on the x–y plane.

Results and discussion

Annual GPP

Annual GPP of forests and nonforests in the T–P

domain are shown in Figs 3 and 4, respectively.

For forests, GPP ranges from 100 to above

2000 g C m�2 yr�1, except that GPP of CASA (GPP of

CASA here is estimated as twice NPP – see Table 1) is

mostly below 1500 g C m�2 yr�1. These values are gen-

erally consistent with those of Beer et al. (2010) over

North America. In general, lower GPP is distributed in

colder/drier climate zones while higher GPP is found

over warmer/moister regimes, indicating a positive

relationship between GPP and both climate variables.
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Table 2. Mean annual GPP* and NPP* estimated for North America

GPP NPP

Forest regions Nonforest regions Total Forest regions Nonforest regions Total

Biome-BGC 6.79 3.88 10.7 2.36 1.64 4.00

LPJ 4.95 7.30 12.3 2.73 4.07 6.80

TOPS 4.99 5.28 10.3 2.49 2.64 5.13

CASA 3.79 5.04 8.83 1.90 2.52 4.42

*Units: 1015 g C m�2 yr�1.
wBased on total vegetated area around 1.77� 1013 m2, including 0.55� 1013 m2 for forest regions and 1.22� 1013 m2 for nonforest

regions.

GPP, gross primary production; NPP, net primary production.
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The center of the contour levels coincides with the

upward diagonal of P 5 50T 1 500, along which the

changes of GPP, or the gradient, are rather uniform

(though they vary among different models). The GPP

contour lines do not generally follow lines of constant

temperature or precipitation, but tilt towards the up-

ward diagonal: below the diagonal (i.e., the ‘warm–dry’

corner) the horizontal contour lines are inclined to-

wards higher precipitation as temperature increases,

indicating that for equal GPP more water is required

in warmer environments; above the diagonal (the ‘cold–

wet’ corner) the vertical contour lines are inclined
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Fig. 2 Density distributions of geographic grid cells in the climate (T–P) domain: (a) forests; (b) nonforests. The color bar indicates the

numbers of grid cells per T–P bin. The red line represents the dry/moist climate boundary (defined by P 5 20T 1 140) and the black line

is the diagonal of the diagram (defined by P 5 50T 1 500).
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towards higher temperature as precipitation increases,

likely induced by lower solar radiation levels associated

with extra rainfall.

In Fig. 3, regions with the highest GPP values reflect

the most favorable climate conditions for forest produc-

tivity. Because these regions are located close to

P 5 50T 1 500, their characteristics may be quantified

by examining GPP variations along this line. Starting

from the origin (�10 1C and 0 mm), GPP increases as

temperature and precipitation increase: the gradient of

GPP is about 125, 70, and 50 g C m�2 yr�1
1C�1 in BIOME-

BGC, LPJ and TOPS-BGC, and CASA, respectively (the corre-

sponding gradients with regard to precipitation are 2.5,

1.4, and 1.0 g C m�2 yr�1 mm�1, respectively). As such,

the most favorable climate region (where GPP reaches

above 1500 g C m�2 yr�1) starts shortly above 0 1C in

BIOME-BGC, but it starts around 10 1C in LPJ and TOPS-

BGC. In CASA, because the highest GPP level is actually

1000–1500 g C m�2 yr�1, its favorable climate regions

also start around 10 1C. When in the favorable climate

regions, GPP becomes steady within certain tempera-

ture ranges. As temperature increases further, it may

eventually become too hot and unfavorable for vegeta-

tion productivity. However, the effects of high tempera-

ture on GPP are not very evident in the chosen T–P

domain, as the upper temperature limit of the favorable

climate regions is about 27 1C for TOPS-BGC and CASA and

up to 30 1C for BIOME-BGC and LPJ.

Compared with forests, the GPP patterns of nonfor-

ests show more diversity among the models (Fig. 4). LPJ

stands out from the other models in that the distribution

patterns of its GPP over these nonforest regions are

almost the same as those of forests. As mentioned

earlier, this is because vegetation simulated by LPJ is

solely regulated by climate, and such ‘potential vegeta-

tion’ would have similar behavior under similar climate

conditions. In the other models, GPP of nonforests is

clearly different from that of forests. For TOPS-BGC and

CASA, the main differences are in magnitude, which

ranges between 500 and 1000 g C m�2 yr�1 in warm/
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Fig. 3 Annual gross primary production (GPP, g C m�2 yr�1) of forests in the T–P domain: (a) BIOME-BGC; (b) LPJ; (c) TOPS-BGC; and (d)

CASA.
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moist regions and rarely reaches above 1500 g C m�2 yr�1;

low GPP values (under 100 g C m�2 yr�1) also become

evident in unfavorable (cold/wet or hot/dry) climate

regions. On the other hand, the distribution patterns of

nonforest GPP in TOPS-BGC and CASA share a characteristic

with those of forests: the centers of contours levels are

largely aligned with P 5 50T 1 500, on which the GPP

gradient is about 30 g C m�2 yr�11 1C�1. Indeed, the dis-

tribution patterns are very similar between TOPS-BGC and

CASA (Fig. 4).

The strongest contrast in GPP between nonforests

and forests is found in BIOME-BGC. Although BIOME-BGC

has the highest forest GPP among the models, its

nonforest GPP is the lowest (Table 2), which is under

1000 g C m�2 yr�1 even in some favorable climate con-

ditions (Fig. 4). The distribution patterns of nonforest

GPP also differ from those of forests. Along

P 5 50T 1 500, for instance, there is a notable region

(5–15 1C) where GPP is under 500 g C m�2 yr�1, while it

is above 500 g C m�2 yr�1 in adjacent colder (�5–5 1C) or

warmer (15–25 1C) climate regions. This feature gives

the distribution of nonforest GPP in BIOME-BGC a bimo-

dal appearance.

The major ecosystems in the low productive regions

discussed above are grasslands/croplands. Therefore,

the results of Fig. 4a suggest some issues of BIOME-BGC in

parameterizing these PFTs. Additional analysis reveals

that the low GPP of grasslands and croplands are

indeed induced by their relatively high fire mortality,

which is assumed 10% per year (in comparison, the fire

mortality of forests is about 0.2–0.5% per year). Redu-

cing fire rates can significantly increase the productivity

of these PFTs. (Reasons why vegetation in BIOME-BGC is

so sensitive to fire in the first place will be discussed in

NPP and CUE).

NPP and CUE

Because NPP in TOPS-BGC and CASA is estimated as a

constant proportion (i.e., 50%) of GPP, their distribution

patterns are identical to those of GPP and thus need not
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Fig. 4 Same as Fig. 3 but for nonforests or, in the case of LPJ, vegetation simulated in nonforest regions: (a) BIOME-BGC; (b) LPJ; (c) TOPS-BGC;

and (d) CASA.
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to be further discussed. Below, we focus only on NPP of

BIOME-BGC and LPJ (Fig. 5).

For both BIOME-BGC and LPJ, NPP ranges mostly be-

tween 0 and 1000 g C m�2 yr�1, about half of the magni-

tude of GPP. The distribution patterns of NPP generally

follow those of GPP, with the centers of contour levels

largely aligned with P 5 50T 1 500. However, there are

also noticeable differences. In LPJ, for example, the

highest NPP (4750 g C m�2 yr�1) is mostly distributed

in climate regions with temperature above 20 1C and

precipitation above 700 mm yr�1. Compared with the

corresponding patterns of GPP, high NPP is apparently

shifted towards hot climate zones, and implies greater

tolerance of drought conditions. For BIOME-BGC, the most

remarkable difference is the reduction in the highest

NPP: even for forests, NPP reaches above

750 g C m�2 yr�1 only in limited climate conditions (T

around 15 1C and P around 1000–1400 mm yr�1). There-

fore, BIOME-BGC has lower overall NPP than LPJ, although

its overall GPP is higher (Table 2).

The relative changes between NPP and GPP can be

evaluated with the carbon use efficiency (CUE; DeLucia

et al., 2007), that is, the NPP-to-GPP ratio (Fig. 6). The

CUE of BIOME-BGC ranges from 10% to 60%, but is mostly

below 50% (Fig. 6a and b). In general, CUE is higher

(�50%) in regions close to P 5 50T 1 500 and is lower

(o20%) in unfavorable climate conditions. For forests;

however, CUE also decreases to o30% when tempera-

ture is above 20 1C (Fig. 6a). This temperature-depen-

dent feature is not evident for CUE of nonforests, which

is rather uniform (40–50%) in most climate conditions.

The overall CUE of BIOME-BGC is �35% and �42% for

forests and nonforests, respectively.

The CUE of LPJ ranges from 40% to 70% in most

climate regions (Fig. 6c and d). It is about 56% for both

forest and nonforest regions, higher than BIOME-BGC. In

addition, LPJs distribution of CUE shows apparent de-

pendence on climate variables (temperature, in particu-

lar). CUE is mostly above 60% when temperature is

below 0 1C; it drops to o60% for 0–12 1C, and further
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Fig. 5 Annual net primary production (NPP, g C m�2 yr�1) in the T–P domain: (a) forests of BIOME-BGC; (b) non-forests of BIOME-BGC; (c)

forests of LPJ; (d) nonforests of LPJ (vegetation simulated in nonforest regions).
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decreases to 40–50% when temperature increases to 12–

22 1C (with precipitation above 800 mm yr�1). Therefore,

the CUE of LPJ generally decreases with increases of

temperature in cold and temperate climate zones. How-

ever, this trend is sharply reversed in hot climate

regions, where CUE jumps to 60–70% when tempera-

ture is above 22 1C (Fig. 6c and d).

Because NPP in these models is calculated as GPP

less AR, we explore the variations of CUE from the

aspect of AR. In general, AR increases exponentially

with temperature (at a rate specified by the Q10 coeffi-

cient). This explains the negative gradient of CUE vs.

temperature as seen in the results of BIOME-BGC (forests,

in particular) over hot climate zones (Fig. 6a), and in the

results of LPJ over cold-temperate climate regions (Fig.

6c and d). In contrast, the sharp increase of CUE in LPJ

over hot climate zones goes against this reasoning,

suggesting parameter changes in the calculation of

AR. Indeed, in LPJ the reference respiration rate for

tropical forests is only about 20% of that for temperate

and boreal forests (Sitch et al., 2003). On the other hand,

the rather uniform CUE of BIOME-BGC is induced by the

fact that GPP in BIOME-BGC is often retrospectively

adjusted based on nitrogen availability (see section

‘Model experiment protocol’), which decreases the sen-

sitivity of CUE to AR.

GPP vs. LAI

It has been long recognized that a linear relationship

generally exists between annual GPP and leaf area

duration, that is, the product of LAI and growing

season length Q6(Kira & Shidei, 1967; Waring & Schle-

singer, 1985). Therefore, below we examine the GPP–

LAI relationship among the tested models. In particular,

we compare annual GPP both to annual mean LAI and

to annual maximum LAI. Because the results of forests

and nonforests either have similar features (TOPS-BGC

and CASA) or their features do not overlap with one

another (BIOME-BGC and LPJ), they are represented in the
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Fig. 6 Carbon use efficiency (CUE, unitless) in the T–P domain: (a) forests of BIOME-BGC; (b) nonforests of BIOME-BGC; (c) forests of LPJ; (d)

nonforests of LPJ (vegetation simulated in nonforest regions).
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same plots. For reference, diagrams of maximum LAI in

the T–P domain are given in the Supporting Informa-

tion (Figs S1 and S2).

Overall, the relationship between annual GPP and

annual mean LAI (Fig. 7) is largely linear, although it

has different characteristics among the models. The

GPP–LAI (mean) relationship of BIOME-BGC (Fig. 7a) is

composed by multiple strong linear components that

represent different PFTs. Components contributed by

forests are most distinguishable: the one representing

deciduous broadleaf forests has LAI mostly under 3 but

its GPP/LAI slope is the highest of all the components,

about 600 g C m�2 yr�1 per LAI; those representing nee-

dleleaf/broadleaf evergreen forests have LAI reaching

5–6 and lower slopes about 300 g C m�2 yr�1 per LAI.

Another less distinctive component that represents

nonforests (grasses/crops, in particular) has annual

mean LAI mostly o1, though its GPP/LAI slope may

be higher than that of the evergreen forests.

The multicomponent linear relationship is also evi-

dent in the scatter plot of LPJ (Fig. 7b). However, these

components are much more dispersed than those of

BIOME-BGC and are characterized by centers with high

scatter densities. For instance, there is one major com-

ponent with LAI under 3 and GPP under

400 g C m�2 yr�1. Its low productivity suggests that this

is mainly comprised of nonforests. In comparison, an-

other major component is distributed with its center at

LAI of 4 and GPP of 800 g C m�2 yr�1, contributed by

samples with more forest dominance. There is also a

minor component centered at LAI of 4 and GPP of

1500 g C m�2 yr�1, representing cells dominated by for-

ests. The overall GPP/LAI slope of the scatter plot is

about 200–300 g C m�2 yr�1 per LAI. Another feature of

LPJs plot is that, although the mean LAI is mostly under

6, it reaches values as high as 8 in some cases.

The GPP/LAI relationships of TOPS-BGC and CASA look

similar (Fig. 7c and d). They show few features that can
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Fig. 7 Density scatter plots between annual gross primary production (GPP, g C m�2 yr�1) and annual mean leaf area index (LAI,

unitless): (a) BIOME-BGC; (b) LPJ; (c) TOPS-BGC; and (d) CASA. The color scheme shows the number of samples represented by each point of

the scatter plot (i.e., the density).
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be tied to specific PFTs, but have an overall nearly linear

shape. These variables are less tightly coupled than in

BIOME-BGC but less dispersed than those in LPJ. The GPP/

LAI slope is about 500 g C m�2 yr�1 per LAI in both

models, except that in CASA, the slope is slightly reduced

when mean LAI is above 2, reflecting lower productiv-

ity of forests in the model.

We further tested the relationship between annual

GPP and annual maximum LAI of all the models (Fig.

8). The outstanding feature of the results is that they

reveal the difference between models that simulate LAI

(BIOME-BGC and LPJ) and models that do not (TOPS-BGC

and CASA). The multicomponent linear relationship is

preserved between GPP and maximum LAI in BIOME-

BGC and LPJ (Fig. 8a and b). Indeed, the two scatter plots

are very similar to the corresponding plots between

GPP and mean LAI (Fig. 7a and b). The differences are

mainly induced by rescaling (or stretching) the compo-

nents of deciduous forests (BIOME-BGC) or nonforests

(LPJ) along the ‘x’ axis (representing LAI) such that the

GPP–LAI slopes of these deciduous components are

lowered by a factor of about 2 (Fig. 8a and b). At the

same time, the evergreen components largely remain

unchanged.

On the other hand, the scatter plots between annual

GPP and annual maximum LAI of TOPS-BGC and CASA

(Fig. 8c and d) are distinctively different from those

between GPP and mean LAI (Fig. 7c and d). Indeed, the

scatter plots of Fig. 8c and d are so dispersed that GPP

may range from almost 0 to above 800 g C m�2 yr�1 with

LAI around 1 (Fig. 8c and d). Such a wide range of

values prevents any meaningful relationship to be

inferred between the two variables.

Because the difference between annual mean LAI and

annual maximum LAI is that the former integrates

information about the seasonal cycle of LAI (i.e., leaf

phenology) whereas the later does not, the different

behaviors between the two groups of models reflect

their differences in modeling leaf phenology. Leaf phe-

nology is explicitly simulated in BIOME-BGC and LPJ but is
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Fig. 8 Same as Fig. 7 but between annual gross primary production (GPP, g C m�2 yr�1) and annual maximum leaf area index (LAI,

unitless): (a) BIOME-BGC; (b) LPJ; (c) TOPS-BGC; and (d) CASA.
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implicitly inferred from satellite measurements (LAI) in

TOPS-BGC and CASA. The results of Figs 7 and 8 indicate

that the simulated phenology is temporally more reg-

ular and/or spatially more homogeneous, so that mean

LAI can be inferred from maximum LAI by a simple

relationship. For instance, comparing Figs 7a and b with

8a and b suggests that in BIOME-BGC and LPJ there is little

seasonal variation in LAI of evergreen PFTs, and the

mean LAI is largely half of the corresponding maximum

LAI for deciduous PFTs. In contrast, phenology implied

by the satellite data is more irregular and heterogeneous

(White et al., 2009), which makes the scatter plots using

maximum LAI (Fig. 8c and d) much more dispersed than

those using mean LAI (Fig. 7c and d).

There are other processes and interactions that play

an important role in shaping the GPP–LAI relationship

in BIOME-BGC and LPJ. The simulation of LAI may be

explained using the analogy of ‘carbon investment’.

That is, plants invest carbon assimilated through photo-

synthesis (GPP) to develop more leaves (and support-

ing tissues) in the expectation of more carbon (increases

in GPP) as the return; the cost associated with the

investment is AR. Because the marginal gain of GPP

decreases as LAI increases (due to the saturation of

FPAR) while AR increases during the same course, a

balance point may be reached when the rate of return

diminishes and NPP reaches its maximum. However, a

balance point of this kind is not checked in BIOME-BGC or

LPJ, likely for the reason that the simulated LAI could be

unrealistically high even before the balance point is

reached. Instead, BIOME-BGC and LPJ implements other

strategies to constrain the growth of LAI.

In BIOME-BGC, such a constraint is provided by soil

nitrogen availability. In determining how much carbon

to allocate, BIOME-BGC needs to evaluate both carbon and

nitrogen budgets. If nitrogen is limited (in most cases),

only a proportion of available carbon is actually allo-

cated. The surplus of carbon is then subtracted from the

original GPP (see section on ‘Model experiment proto-

col’). As such, the GPP of BIOME-BGC is substantially

influenced by the actually allocated carbon, and this is

the reason for the strong linear relationship between

GPP and LAI. On the other hand, the constraint to LAI

growth in LPJ is implemented as a self-thinning process:

when the density of forests is above a certain limit, or

when the size of an individual tree is too big, the extra

portion of vegetation tissue is forced to be shed as litter

(Sitch et al., 2003). However, nonwoody species (non-

forests) in LPJ are not limited by their density and are

able to grow without limit. As such, LAI of nonforests

in LPJ can be higher than that of forests; also, the GPP–

LAI relationship of nonforests is more linear (Fig. 8b).

The discussions of GPP–LAI interactions in BIOME-BGC

help explain its different GPP patterns between forests

and nonforests. Among the tested models, BIOME-BGC

has the highest GPP over forests but the lowest GPP

over nonforests (Table 2). A direct reason for the low

production of nonforests is that BIOME-BGC can not

efficiently produce leaf area for those ecosystems, even

when the production is not limited by climate (Figs 4

and S2). Yet the deeper reason that nonforests (grasses

and crops, in particular) fail to generate sufficient leaf

area is that they have a much higher rate of fire (10% per

year) than those of forests (0.2–0.5% per year), through

which a lot more nitrogen is lost. Therefore, grasslands

and croplands in BIOME-BGC are generally in greater

need of exogenous nitrogen than forests, and the tight

coupling of carbon and nitrogen cycles in BIOME-BGC

makes the model very sensitive to parameters such as

annual fire rate and nitrogen deposition rate. This

example, along with all the other issues of different

models discussed above, emphasizes the impacts of

different modeling strategies on model behaviors and

highlights the structural uncertainties that can be in-

duced in the simulated results.

Finally, limitations of the current study should be

recognized. Although we aim at structural differences

among ecosystem models, some of the discussed results

are clearly dependent on the parameter values chosen

for each ensemble member. For instance, if we increase

the LUE coefficients of forests in CASA by 20%, the

magnitudes of its simulated GPP will be more compar-

able to the other three models. Also, the above discus-

sions mainly focus on the mean of ecological variables

in the T–P space, while their variance has barely been

analyzed. Solutions to these issues are very important

for us to further quantify uncertainties among ecosys-

tem models, and we should address them in future

studies.

Conclusions

This study reports results from a MME experiment

designed to diagnose and assess sources of uncertain-

ties among terrestrial ecosystem models. The experi-

ment was conducted under the TOPS, and the tested

models include public versions of BIOME-BGC, LPJ, TOPS-

BGC, and CASA. We developed the HFDEM to system-

atically analyze outputs of the model experiments.

HFDEM separates the simulated biogeochemistry into

a cascade of three functional tiers and sequentially

examines their characteristics in climate (temperature–

precipitation) and other spaces. This paper focuses on

how carbon is assimilated through GPP and how it is

partitioned between AR and net carbon gain.

Analyzing model results in the climate (T–P) domain

indicates a general agreement on GPP among the mod-

els, which is particularly evident in the distribution
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patterns. GPP tends to be optimal in climate regions

where the relationship between annual temperature

and precipitation is defined by P 5 50T 1 500. Along

this line, GPP generally increases by �70 g C yr�1 m�2

(forests) or by �30 g C yr�1 m�2 (nonforests) for a 1 1C

increase in temperature (or 50 mm increase in precipita-

tion) in cold/temperate climate regimes. The consensus

of such broad patterns reflects the dominant control of

climate variables on simulated ecosystem production.

Also, strong relationships are found between annual

GPP and annual mean LAI in all the models, suggesting

the latter as a good indicator to estimate vegetation

production.

Differences in patterns and magnitudes of GPP are

also identified. For instance, BIOME-BGC has the highest

GPP for forests but the lowest GPP for nonforests

among the tested models, while the corresponding

contrast of GPP is much smaller in the other models.

A major source of such differences can be traced back to

how LAI is simulated in the models. For BIOME-BGC and

LPJ, in particular, there is a positive feedback between

the growth of LAI and GPP. Different strategies (e.g.,

nitrogen limitation vs. self-thinning) to constrain such

positive feedbacks lead to distinctive characteristics of

the two models. The assimilation of satellite measure-

ment of LAI in TOPS-BGC and CASA relieves them from

the difficulty of modeling GPP–LAI interactions, yet

uncertainties may be introduced by the satellite datasets

themselves.

NPP in TOPS-BGC and CASA is assumed as a constant

ratio (50%) of GPP, whereas in BIOME-BGC and LPJ it is

simulated through independent estimation of AR. The

independently simulated NPP largely follows the pat-

terns of GPP, and the corresponding NPP-to-GPP ratios

(CUE) are close to 50% on average. However, this

coincidence could be a result of model calibration. In

spite of the above agreement, separating respiration

from GPP remains a challenge for both BIOME-BGC and

LPJ. In BIOME-BGC, this process is complicated by the

regulation of nitrogen availability; while in LPJ, different

parameterizations of AR in temperate and tropical

forests result in discrepancies of CUE between the two

PFTs.

The goal of this study is mainly to develop a general

diagnostic framework (i.e., HFDEM) to systematically

analyze and compare the characteristics of different

ecosystem models. The developed methodology can

also be applied to analyze observational datasets and

facilitate model-data comparisons. For instance, the

same T–P diagrams can be used to describe distribu-

tions of observed ecological variables in climate space.

By neglecting geographic coordinates, the T–P dia-

grams allow model results to be compared with refer-

ence data from different regions, which helps increase

the sample size of observations in the comparison.

Indeed, this feature also allows model results from

different experiments to be compared. Therefore, by

increasing the sample size of ecosystem models and

reference data in ensemble experiments, the potential

exists to gain a more comprehensive understanding of

the causes of structural uncertainty and therefore con-

strain models more intelligently in the future.
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Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Figure S1. Annual maximum LAI (unitless) of forests in the

T-P domain: (a) Biome-BGC; (b) LPJ; and (c) AVHRR (input

for TOPS-BGC and CASA).

Figure S2. Same as Fig. SA1 but for non-forests or vegetation

simulated over non-forest regions: (a) Biome-BGC; (b) LPJ;

and (c) AVHRR (input for TOPS-BGC and CASA).

Please note: Wiley-Blackwell are not responsible for the content

or functionality of any supporting materials supplied by the

authors. Any queries (other than missing material) should be

directed to the corresponding author for the article.
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