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ade long Earth System Data Records (ESDRs) of Leaf Area Index (LAI) and Fraction
of Photosynthetically Active Radiation absorbed by vegetation (FPAR) from remote sensing measurements of
multiple sensors is key to monitoring long-term changes in vegetation due to natural and anthropogenic
influences. Challenges in developing such ESDRs include problems in remote sensing science (modeling of
variability in global vegetation, scaling, atmospheric correction) and sensor hardware (differences in spatial
resolution, spectral bands, calibration, and information content). In this paper, we develop a physically based
approach for deriving LAI and FPAR products from the Advanced Very High Resolution Radiometer (AVHRR)
data that are of comparable quality to the Moderate resolution Imaging Spectroradiometer (MODIS) LAI and
FPAR products, thus realizing the objective of producing a long (multi-decadal) time series of these products.
The approach is based on the radiative transfer theory of canopy spectral invariants which facilitates
parameterization of the canopy spectral bidirectional reflectance factor (BRF). The methodology permits
decoupling of the structural and radiometric components and obeys the energy conservation law. The
approach is applicable to any optical sensor, however, it requires selection of sensor-specific values of
configurable parameters, namely, the single scattering albedo and data uncertainty. According to the theory
of spectral invariants, the single scattering albedo is a function of the spatial scale, and thus, accounts for the
variation in BRF with sensor spatial resolution. Likewise, the single scattering albedo accounts for the
variation in spectral BRF with sensor bandwidths. The second adjustable parameter is data uncertainty,
which accounts for varying information content of the remote sensing measurements, i.e., Normalized
Difference Vegetation Index (NDVI, low information content), vs. spectral BRF (higher information content).
Implementation of this approach indicates good consistency in LAI values retrieved from NDVI (AVHRR-
mode) and spectral BRF (MODIS-mode). Specific details of the implementation and evaluation of the derived
products are detailed in the second part of this two-paper series.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction
The monitoring and modeling of the terrestrial biosphere within
the larger context of climate variability and change studies requires
multi-decadal time series of key variables characteristic of vegetation
structure and functioning (NRC Decadal Survey, 2007; GCOS, 2006).
Consequently, there is now a pressing need to develop methodologies
for generating continuous long-term Earth System Data Records
(ESDRs) from remote sensing data collected with different sensors
over the past three decades. In this article, we focus on two key
biophysical variables, leaf area index (LAI) and fraction vegetation
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absorbed photosynthetically active radiation (FPAR), that control the
exchange of energy, mass (e.g. water and CO2) and momentum
between the Earth surface and atmosphere (Dickinson et al., 1986;
Potter et al., 1993; Sellers et al., 1996; Tian et al., 2004; Demarty et al.,
2007).

The Advanced Very High Resolution Radiometers (AVHRR) on-
board NOAA 7-14 series satellite platforms delivered the first high
temporal resolution global time series of data suitable for vegetation
sensing starting from July 1981 (Tucker et al., 2005). The NASA Mod-
erate Resolution Imaging Spectroradiometer (MODIS) andMulti-angle
Imaging SpectroRadiometer (MISR) onboard Terra and Aqua platforms
started providing higher quality spectral and angular measurements
since February 2000 (Diner et al., 1999; Justice & Townshend, 2002).
These records are expected to be extended by the planned Visible/
Infrared Imager Radiometer Suite (VIIRS) instrument onboard the
NPOESS Preparatory Project (NPP) to be launched in the near future
area index earth system data record from multiple sensors. Part 1:
.014
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(Murphy, 2006). Other long-term sources of data for vegetation
monitoring include the Sea-viewing Wide Field-of-view Sensor (Sea-
WiFS), Systeme Pour l'Observation de la Terre (SPOT) VEGETATION, and
ENVISAT Medium Resolution Imaging Spectrometers (MERIS).

The challenges underlying the generation of continuous time
series of land products from data of multiple instruments include both
remote sensing science and sensor-related issues. The scientific chal-
lenges include modeling highly variable radiative properties of global
vegetation, scaling, and atmospheric correction of data. Traditionally,
the Normalized Difference Vegetation Index (NDVI) has been used for
long-term global vegetation monitoring (Myneni et al., 1997). Bio-
physical parameters (LAI and FPAR) have been retrieved from NDVI
using empirical relationships (Sellers et al., 1996). However, those re-
lationships are site-, time-, and biome-specific and their use in global
operational production may be limited (Baret & Guyot, 1991; Wang
et al., 2004). Scaling issues (mixture of different vegetation types) in-
troduce an additional bias as vegetation classes with relatively low
pixel fractional coverage are under-represented in coarse resolution
retrievals (Tian et al., 2002; Steltzer & Welker, 2006; Shabanov et al.,
2007). Finally, the retrieval of biophysical parameters require surface
reflectances, however, a complete atmospheric correction of AVHHR
data was not performed in the past due to limited availability of req-
uisite ancillary data.

The hardware issues include differences in sensor spectral char-
acteristics, spatial resolution, calibration, measurement geometry and
data information content. Differences in sensor spectral bands (central
wavelength and bandwidth) result in differential sensitivity of the
sensor's spectral response functions (SRF) to the impact of Rayleigh
scattering, ozone, aerosol optical thickness, water vapor content and
reflection from the ground (Vermote & Saleous, 2006; Van Leeuwen
et al., 2006). The variation in spatial resolution involves the impact of
sensor-dependent Point Spread Function (PSF), such that radiometric
measurements for a particular pixel are partially mixed with those of
adjacent pixels and re-sampling to the common resolution almost
always results in a bias (Tan et al., 2006). At- and post-calibration
results in varying sensitivity of satellite image Digital Numbers (DN) to
recorded radiation (Vermote & Saleous, 2006). The calibration issues
are further complicated by orbital drift and related changes in illumi-
nation/observation geometry (Gutman, 1998). Finally, the information
content of measurements will vary between sensors, e.g. due to
different number of bands, view angles, etc., and retrieval techniques
should take advantage of available multi-angular, multi-spectral, high
spatial or temporal resolution measurements.

The two widely used NDVI time series data are the Pathfinder
AVHRR Land (PAL) and Global Inventory Monitoring and Modeling
Studies (GIMMS) (Tucker et al., 2005). These data sets cover nearly the
entire record (July 1981 to the present) at 8-km spatial resolution as
15-day temporal composites (PAL is 10-day composite). The data pro-
cessing included calibration, interpolation of missing data, and partial
atmospheric correction with statistical techniques. Several studies
reveal significant trends in NDVI over the Northern high latitudes
(Myneni et al., 1997; Zhou et al., 2001); however, the accuracy of the
assessment was questioned (Gutman, 1998). The Canadian Center for
Remote Sensing is routinely generating Canada-wide time series of LAI
and FPAR from AVHRR and VEGETATION at 1-km resolution as 10-day
composites using empirical algorithms (Chen et al., 2002). Likewise,
the Joint Research Center is currently developing time series of FPAR
from SeaWiFS, MERIS, and VEGETATION (Gobron et al., 2006).

Multi-decadal global data sets of LAI and FPAR of known accuracy
and produced with a physically based algorithm are currently not
available. Efforts are underway to perform rigorous physically based
calibration and atmospheric correction to achieve consistency with
the reference MODIS NDVI records (Vermote & Saleous, 2006). These
efforts should result in higher quality surface reflectance data ideally
suited for producing LAI and FPAR ESDRs. Thus, the objectives of this
research are to formulate and demonstrate the performance of a syn-
Please cite this article as: Ganguly, S., et al., Generating vegetation leaf
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ergistic approach for LAI and FPAR ESDR retrievals from measure-
ments of multiple satellite sensors. The theoretical aspects of the
approach are presented in this paper, while results from evaluation of
the quality of the generated data series are presented in the second
paper. This paper is organized as follows. The criteria for ensuring
consistency between retrievals from different sensors are formulated
in Section 2. The next section introduces the theoretical basis of a
multi-sensor retrieval algorithm, namely, parameterization of the
canopy spectral reflectance using the radiative transfer theory of
spectral invariants. Methods for accounting differences in sensor
spatial resolution and spectral bands are presented in Sections 4 and 5.
The following section describes an approach to adjust the retrieval
technique for handling variations in the information content of the
satellite data. Finally, the concluding remarks are given in Section 7.

2. Criteria for ensuring consistency

Generation of ESDRs from observations of multiple instruments
requires deriving an inter-sensor consistent productwhich alsomatches
well with ground truth measurements. A one-to-one relationship
between remote observations and a land parameter of interest can be
achieved only in the case of error-free measurements delivering suf-
ficient information content (Choulli & Stefanov, 1996). In practice, the
retrieval of LAI and FPAR from satellite data should be treated as an ill-
posed problem; that is, small variations in input data due to un-
certainties in measurements can result in a change in the relationship,
leading not only to non-physically high variations in the retrieved values
but also to the loss of a true solution, since it may not satisfy the altered
relationship (Wang et al., 2001; Combal et al., 2002; Tan et al., 2005).
Input data and their uncertainties are, “in general, the minimal in-
formation necessary to construct approximate solution for ill-posed
problems” (Tikhonov et al., 1995, p.3). The inclusion of more measured
information (spectral and/or angular variation) tends to improve the
relationship between satellite observations and the desired parameters.
This however notonly increases theoverall data informationcontent but
also increases their overall uncertainty. The former enhances the quality
of retrievals while the latter suppresses it. Therefore, the specification of
an optimal combination of data information content and overall un-
certainty is a key task to achieving continuity in the multi-sensor time
series of LAI and FPAR products.

In general, the information conveyed by surface reflectances is not
sufficient to retrieve a unique LAI value. For example, different com-
binations of LAI and soil types can result in the same value of canopy
spectral reflectances; or different spectral reflectances can correspond
to the same LAI value but for different vegetation types (Diner et al.,
2005). A particular observation of surface reflectance is therefore
associated with a set of canopy parameter values. We refer to these as
the set of acceptable solutions (Knyazikhin et al., 1998a). This set of
solutions depends on the properties of measured surface reflectances:
absolute values and uncertainties, spectral characteristics, spatial
resolution, and observation geometry. In general, a larger volume and
higher accuracy of the measured information corresponds to a better
localized set of solutions. The solution set “size” can, therefore, be
used as a measure of the data information content. We use this
concept to formulate the following requirements for a multi-sensor
algorithm to generate consistent LAI and FPAR retrievals from AVHRR
and MODIS sensors:

(a) The algorithm should generate a set of acceptable solutions giv-
en AVHRR NDVI;

(b) This set should include all acceptable solutions generated by
the MODIS algorithm when given the corresponding AVHRR
spectral reflectances;

(c) The algorithm should also be capable of admitting AVHRR spec-
tral reflectances, in addition to NDVI, and generate the same set
of acceptable solutions as the MODIS algorithm.
area index earth system data record from multiple sensors. Part 1:
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In the above formulation, Terra MODIS LAI and FPAR products
serve as the benchmark. It should be noted that the above technique
falls into the category of the “probability approach to ill-posed prob-
lems” which is close to the decoding problem of information theory
(Lavrentiev, 1967, pp. 8–9). It therefore naturally incorporates the no-
tions “uncertainty” and “information”.

3. Parameterization of canopy spectral reflectance

Retrievals of the LAI/FPAR ESDR from multiple sensors require
parameterization of the retrieval algorithm that can be adjusted for
the specific features of the Bidirectional Reflectance Factor (BRF) mea-
surements by a particular sensor (spatial resolution, bandwidth, cali-
bration, atmospheric correction, information content, etc., cf. Section
1). The radiative transfer theory of canopy spectral invariants provides
the required BRF parameterization via a small set of well-defined
measurable variables that specify the relationship between the spec-
tral response of vegetation canopy bounded below by a non-reflecting
surface to the incident radiation at the leaf and canopy scales (Wang
et al., 2003; Huang et al., 2007; Lewis & Disney, 2007; Smolander &
Stenberg, 2005).

3.1. Canopy spectral invariants

Photons that have entered the vegetation canopy undergo several
interactions with leaves before either being absorbed or exiting the
medium through its upper or lower boundary (Fig. 1). Interacting
photons can either be scattered or absorbed by a phytoelement. The
probability of a scattering event, or leaf single scattering albedo, ωλ,
depends on the wavelength and is a function of the leaf biochemical
constitution. If objects are large compared to the wavelength of the
radiation, e.g., leaves, branches, etc., the photon free path between
two successive interactions is independent of the wavelength. The
interaction probabilities for photons in a vegetation media, therefore,
are determined by the structure of the canopy rather than photon
frequency or the optical properties of the canopy. To quantify this
feature, Smolander and Stenberg (2005) introduced the notion of
recollision probability, p, defined as the probability that a photon
scattered by a foliage element in the canopy will interact within the
canopy again. This spectrally invariant parameter is a function of
canopy structural arrangement only (Huang et al., 2007; Lewis &
Disney, 2007). Scattered photons can escape the vegetation canopy
either through the upper or lower boundary. Their angular distribu-
tion at the upper boundary is given by the directional escape prob-
ability, ρ(Ω) (Huang et al., 2007). Given recollision, pm, and escape, ρm
(Ω), probabilities as a function of scattering order, m, the bidirectional
Fig. 1. Schematic plot of the photon-canopy interactions. Photons incident on the vegetatio
initial collision, or canopy interceptance, does not depend on wavelength and is a function o
scattered by the foliage elements with probability ωλ, and, in turn, will either interact aga
function of scattering order m, the probability that photons from the incident beam will
absorption after m interactions is (1−ωλ)ωλ

m(p1p2⋯pm −1)i0. The proportion of absorbed or ex
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reflectance factor, BRFBS,λ(Ω), for a vegetation canopy bounded below
by a non-reflecting surface can be expanded in a series of successive
orders of scattering (Huang et al., 2007).

BRFBS;λ Xð Þ ¼ ρ1 Xð Þωλi0 þ ρ2 Xð Þω2
λp1i0 þ : : :

þ ρm Xð Þωm
λ p1p2: : :pm−1ð Þi0 þ : : :: ð1Þ

Here i0 is the probability of initial collision, or canopy interceptance,
defined as the proportion of photons from the incident beam that are
intercepted, i.e., collide with foliage elements for the first time. This
parameter gives the proportion of shaded area on the ground which in
turn is directly related to the proportion of the sunlit leaf area. Canopy
interceptance does not depend on the wavelength and is a function of
the direction of the incident beam and canopy structure.

In the general case, the recollision and escape probabilities varywith
the scattering order m. For m=1, the directional escape probability
coincides with the bi-directional gap probability. These probabilities,
however, reach plateaus as the number of interactions m increases.
Monte Carlo simulations of the radiation regime in 3D canopies suggest
that the probabilities saturate after 2 to 3 interactions for low to mod-
erate LAI canopies (Lewis & Disney, 2007) with the recollision prob-
ability exhibiting a much faster convergence (Huang et al., 2007).
Neglecting variations in pm with m (i.e., pm≈const=p) and in ρm(Ω) for
mN1 (i.e., ρm(Ω)≈const=ρ2(Ω) form≥2) in Eq. (1), one obtains the first
order approximation for the BRFBS,λ (Huang et al., 2007)

BRFBS;λ Xð Þ ¼ ωλR1 Xð Þ þ ω2
λ

1−pωλ
R2 Xð Þ: ð2Þ

Here R1(Ω)=ρ1(Ω)i0 and R2(Ω)=ρ2(Ω)pi0 are the escape probabilities
expressed relative to the number of incident photons. The accuracy of
this first order approximation depends on the difference between suc-
cessive approximation to p multiplied by the factor ωλpð Þ2= 1−ωλpð Þ
(Huang et al., 2007).

Under the above assumption regarding dependence of the rec-
ollision probability on the scattering order, the spectral absorptance,
aBS,λ of the vegetation canopy with non-reflecting background can be
expressed as (Fig. 1)

aBS;λ ¼ 1−ωλ

1−pωλ
i0: ð3Þ

The corresponding FPAR is a weighted integral of Eq. (3) over the
PAR spectral region (Knyazikhin et al., 1998a). According to Smolander
and Stenberg (2005) Eq. (3) provides an accurate estimate of canopy
spectral absorptance. A detailed analysis of the approximations given
by Eqs. (2) and (3), their accuracies as well as how the recollision
probability and canopy interceptance can be accurately measured in
the field are discussed in Huang et al. (2007).
n canopy will be intercepted by phytoelements with probability i0. This probability of
f the direction of incident beam and canopy structure. The intercepted photons will be
in or escape the canopy with probabilities p and ρ, respectively. Given pm and ρm as a
escape the vegetation after m interactions is ρmωλ

m(p1p2⋯pm−1)i0. The probability of
iting photons is equal to the sum of corresponding probabilities for scattering order m.

area index earth system data record from multiple sensors. Part 1:
.014

http://dx.doi.org/10.1016/j.rse.2008.07.014


4 S. Ganguly et al. / Remote Sensing of Environment xxx (2008) xxx–xxx

ARTICLE IN PRESS
3.2. Canopy-ground interactions

The three-dimensional radiative transfer problem with arbitrary
boundary conditions can be expressed as a superposition of some
basic radiative transfer sub-problems with purely absorbing bound-
aries and to which the notion of spectral invariant can be directly
applied (Knyazikhin & Marshak, 2000). These two problems are: (1)
the black soil problem, “BS-problem”, specified by the original illu-
mination conditions at the top of the canopy and a completely ab-
sorbing soil at the bottom; (2) the soil problem, “S-problem”, specified
by no input energy at the top, but Lambertian energy sources at the
bottom. This decomposition technique was implemented in the
MODIS LAI/FPAR operational algorithm (Knyazikhin et al., 1998a). Ac-
cording to this approach, the spectral BRF and canopy spectral ab-
sorptance are approximated as

BRFλ Xð Þ ¼ BRFBS;λ Xð Þ þ ρsur;λ

1−ρsur;λrS;λ
tBS;λ JS;λ Xð Þ; ð4Þ

aλ ¼ aBS;λ þ
ρsur;λ

1−ρsur;λrS;λ
tBS;λaS;λ: ð5Þ

The second term on the right hand side of Eqs. (4) and (5) describes
the contribution to the BRF and absorptance from multiple interac-
tions between the ground and vegetation (cf. Appendix). Here, ρsur,λ is
an effective ground reflectance, and tBS,λ is the transmittance of the
vegetation canopy for the BS-problem. Variables rS,λ, aS,λ, and JS,λ(Ω)
represent solutions to the “S-problem”. The expansion in successive
order of scattering as given by Eq. (1) and illustrated in Fig. 1 is also
applicable to the “S-problem”, with the only difference that i0 is re-
placed with i0,S, the proportion of photons from sources below the
canopy that are intercepted (i.e., those that collide with foliage ele-
ments for the first time). A full set of equations describing canopy-
ground interaction is given in the Appendix.

Thus, a small set of well defined measurable variables provide an
accurate parameterization of canopy optical and structural properties
Fig. 2. Canopy interceptances i0 and i0,S as a function of LAI. The latter is the proportion of
Calculations were performed for a vegetation canopy consisting of identical cylindrical “trees”
(black soil problem) and reflecting (soil problem) surface. The canopy structure is parameteri
H, and crown diameter D. The LAI varies with the ground cover as LAI=gLo. The stochastic rad
both reflecting and non-reflecting surfaces. The interceptances i0 and i0,S are obtained by fit
LAI are set to 1(in relative units), 2 and 10, respectively. The solar zenith angle and azimuth
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required to fully describe the spectral response of a vegetation canopy
to incident solar radiation. This set includes spectrally varying soil
reflectance (ρsur,λ), single-scattering albedo (ωλ), spectrally invariant
canopy interceptances (i0 and i0,S), recollision probability (p) and the
directional escape probability (ρ1 and ρ2) and their hemispherically
averaged values.

3.3. Generation of structural parameters

The global classification of canopy structural types utilized in the
Collection 5 MODIS LAI/FPAR algorithm was adopted in this study
(Shabanov et al., 2005; Yang et al., 2006). According to this classification,
global vegetation is stratified into eight canopy architectural types or
biomes: (1) grasses and cereal crops, (2) shrubs, (3) broadleaf crops, (4)
savannas, (5) evergreen broadleaf forests, (6) deciduous broadleaf
forests, (7) evergreen needle leaf forests and (8) deciduous needle leaf
forests. The structural attributes of these biomes are parameterized in
terms of variables that the transport theory admits (Knyazikhin et al.,
1998a). The stochastic radiative transfer equation was used to generate
theCollection 5 Look-up-Tables (LUT)— a set of tabulatedBRF values as a
function of biome type, LAI, view/illumination geometry, etc. (Shabanov
et al., 2000; Huang et al., 2008). According to our strategy we first
generate the spectrally invariant parameters for which the spectral BRF
and absorptance coincidewith corresponding entries of the Collection 5
MODIS LUTs for all combinations of LUT entries. Next, given these
parameters, the BRF and absorptance for specific wavelengths can be
calculated using Eqs. (2)–(5) and (A2)–(A4) with varying single
scattering albedo which is used as the tuning parameter to adjust the
LUTs for data spatial resolution and spectral band characteristics (cf.
Sections 4 and 5).

The canopy interceptances can be directly calculated using the
stochastic radiative transfer equation. Fig. 2 shows i0 and i0,S as a
function of LAI for one example vegetation type (savannas). Isotropic
diffuse sources below the canopy are used to specify the interceptance
i0,S. Notably, i0,S is greater than i0, that is, interception is higher under
photons from isotropic sources below the canopy that is intercepted by the vegetation.
uniformly distributed in the canopy layer bounded from below by both a non-reflecting

zed in terms of the leaf area index of an individual tree, Lo, ground cover, g, crown height,
iative transfer equationwas used to derive canopy spectral interaction coefficient i(λ) for
ting the spectral invariant approximation to i(λ). The crown diameter, height and plant
of the incident beam are 30° and 0°. The view zenith angle is nadir.

area index earth system data record from multiple sensors. Part 1:
.014

http://dx.doi.org/10.1016/j.rse.2008.07.014
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and plant LAI are set to 1(in relative units), 2 and 10, respectively. The solar zenith angle and azimuth of the incident beam are 30o and 0o. The view zenith angle is nadir.
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diffuse illumination conditions (Min, 2005; Gu et al., 2002), which is
captured by our simulations.

The stochastic radiative transfer equation is used to simulate the
solutions of the “BS-problem” (BRFBS, aBS and tBS) and “S-problem” (aS,
rS, and tS) as a function of the single scattering albedo, ω, for various
LAI and sun-view geometries. For given LAI and sun-view geometry,
the spectrally invariant parameters are obtained by fitting the ana-
lytical approximations (cf. Eqs. (2), (3) and Appendix) to their simu-
lated counterparts. The parameters thus obtained are functions of LAI
and sun-view geometry. Fig. 3 shows the recollision probabilities cal-
Fig. 4. Values of the energy conservation relationships rBS+ tBS+aBS as a function of single
described in Fig. 2. Parameters rBS, tBS and aBS are obtained from the spectral invariant appr
stochastic radiative transfer simulations.

Please cite this article as: Ganguly, S., et al., Generating vegetation leaf
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culated by fitting solutions for the “BS-problem” and “S-problem” to
their simulated values. As expected, these variables are close to each
other (Huang et al., 2007).

Given spectrally invariant parameters, the reflectances (rBS and rS),
transmittances (tBS and tS), and absorptances (aBS and aS) are calculated
for varying LAI and single scattering albedo values using the spectral
invariant approximations and checked for validity of the energy con-
servation law, r+t+a=1, for both the “BS-” and “S-” problems (Fig. 4).
Note that the accuracy of r+t+a=1 follows the accuracy of thefirst order
approximation given by the factor (ωλp)2 /(1−ωλp) (Section 3.1); that is,
scattering albedo and LAI. Calculations were performed for the 3D vegetation canopy
oximation to the reflectance, transmittance and absorption values as derived from the

area index earth system data record from multiple sensors. Part 1:
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the closerp andωλ to 1, the lower the accuracy is. Finally, BRFs at red and
NIR spectral bands corresponding to values of single scattering albedo of
Collection 5 MODIS LUT are calculated as a function of the effective
ground reflectances at red and NIR wavelengths, LAI and sun-view
geometry. The BRF values are compared with corresponding values
stored in the Collection 5 MODIS LUTs to ensure consistency (Fig. 5).

4. Algorithm adjustment for the sensors spatial resolution

Our scaling approach is based on the scale dependence of the
single scattering albedo. This variable is defined as the probability that
a photon intercepted by foliage elements in volume V will escape V.
The volume V is associated with the scale at which the single scat-
tering albedo is defined, e.g., single leaf, clump of leaves, tree crown,
patch, or even a satellite pixel. The theory of canopy spectral invariants
provides an accurate description of variations in the single scattering
albedo with scale V (Smolander & Stenberg, 2005; Lewis & Disney,
2007). In our approach, BRF is an explicit function of the single
scattering albedo and thus this theory can be applied to imbue scale
dependence to the algorithm. The aim of this section is to demonstrate
how the canopy spectral invariant relationships can be employed to
adjust solutions of the “BS” and “S” problems for sensor resolutions.

Consider two volumes, V0 and V, representing pixel and tree crown
scales. Their single scattering albedos ωλ(V0) and ωλ(V) quantify the
scattering properties of the pixel V0 and its constituent objects of
volume V. The latter are distributed within V0 in a certain fashion. It
follows from Eq. (3) that the pixel single scattering albedo,ωλ(V0), can
be estimated as (Smolander & Stenberg, 2005; Lewis & Disney, 2007)

ωλ V0ð Þ ¼ i0 V0ð Þ−abs;λ V0ð Þ
i0 V0ð Þ ¼ ωλ Vð Þ 1−p VYV0ð Þ

1−ωλ Vð Þp VYV0ð Þ : ð6Þ

Here i0(V0) is the proportion of photons intercepted by the volume
V0 (Fig. 1), and p(V→V0) is the recollision probability, defined as the
probability that a photon scattered by volume V (e.g., by a tree crown)
resident in the pixel V0 will hit another volume V (e.g., another tree
crown) in the same pixel. Its value is determined by the distribution of
volumes V (e.g., tree crowns) within V0.

Eq. (6) links canopy spectral behavior at the pixel and tree crown
scales. Indeed, the canopy single scattering albedo ωλ(V0) (pixel scale)
Fig. 5. The spectral invariant approximation to the BRF superimposed on the MODIS LUTs
entries for the BRF. The effective ground reflectance patterns for the MODIS LUT are
restricted to dark and intermediate brightnesses for illustrationpurpose,while the spectral
invariant simulation includes backgrounds ranging from dark to bright soils. The red-NIR
spectral space is displayed for the broadleaf forest vegetation class, characterized by the
single scattering albedos at the NIR(ωnir=0.84) and red (ωred=0.14) bands. Calculations
wereperformed for the3Dvegetation canopydescribed inFig. 2. The solar zenith angle and
azimuth of the incident beam are 30° and 0°. The view zenith angle is nadir.
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is an explicit function of the spectrally varying single scattering albedo
ωλ(V) at the tree crown scale V and the spectrally invariant recollision
probability p(V→V0). The latter is a scaling parameter that accounts
for the cumulative effect of canopy structure from tree crown to pixel
scales. Both ωλ(V) and p(V→V0) vary with scale V. For example, the
single scattering albedo and the recollision probability associated with
needle, shoot, branch, tree crown, etc., are different (Smolander &
Stenberg, 2003). However since the left-hand side of Eq. (6) does not
depend on V, the algebraic expression on the right-hand side of this
equation should also be independent of the scale V. Based on this
property, Smolander and Stenberg (2005) specified variation in the
leaf single scattering albedo and the recollision probability with the
scale V as follows.

Consider the scale V (e.g., tree crown) which in turn consists of
smaller objects (e.g. clump of leaves) distributed in V. Let V′ and ωλ(V′)
represent the scale of the object and its single scattering albedo. Eq. (6)
can also be applied to the volume V, i.e.,

ωλ Vð Þ ¼ ωλ V Vð Þ 1−p V VYVð Þ
1−ωλ V Vð Þp V VYVð Þ : ð7Þ

Substitution of this equation into Eq. (6) results in the same equation
for ωλ(V0) with the only difference that ωλ(V) is replaced with ωλ(V′)
and p(V→V0) is replaced with a new recollision probability p(V′→V0)
calculated as

p V VYV0ð Þ ¼ p V VYVð Þ þ 1−p V VYVð Þ½ �p VYV0ð Þ: ð8Þ

One can see the probability p(V′→V0) that a photon scattered by a
volume V′ (e.g., clump of leaves) will interact within the pixel V0 again
follows the Bayes' formula given by Eq. (8). The recollision probability,
therefore, is a scaling parameter that accounts for the cumulative
effect of multi-level hierarchical structure in a vegetated pixel.

Smolander and Stenberg (2003, 2005) demonstrated the validity of
the scaling relationships for needle (V′=needle) and shoot (V′=shoot)
scales. Lewis and Disney (2007) found that Eqs. (6)–(8) are applicable
to the within leaf (V′=a within-leaf scattering object) and leaf (V′=
leaf) scales, implying that scaling equations provide a framework
through which structural information can be maintained in a con-
sistent manner across multiple scales fromwithin-leaf to canopy level
scattering. Tian et al. (2002) used a semi-empirical approach to ac-
count for biome mixtures within a coarse resolution pixel.

The scaling properties of the scattering process underlie our ap-
proach for developing scale-dependent formulation of the radiative
transfer process in vegetation canopies. First, one defines a base scale, V,
in a canopy-radiation model, e.g., tree crown, patch, etc. The structure-
dependent coefficients that appear in the radiative transfer equation are
parameterized in terms of the distribution of objects in the volume V
within the pixel V0 and thus are independent of the structure that exists
within V. The concepts of the pair-correlation function (Huang et al.,
2008) and biome mixtures (Shabanov et al., 2007) are used to obtain
these coefficients. Second, the single scattering albedo ωλ(V) of the
object (which also appears in the equation) is calculated using Eqs. (7)
and (8). The radiative transfer equation describes the interaction
between photons and objects of the volume Vwhile multiple scattering
within V is accounted by the single scattering albedo ωλ(V).

In our parameterization (cf. Section 3), canopy reflectance and
absorptance are explicit functions of structural parameters and single
scattering albedo. The accuracy of the approximation depends on [ωλ

(V)p(V→V0)]2/[1−ωλ(V)p(V→V0)]; that is, the smaller the p value, the
more accurate the approximation is (Huang et al., 2007). It follows
from Eqs. (7) and (8) that the single scattering albedo and the rec-
ollision probability are decreasing functions of V, i.e., ωλ(V)≤ωλ(V′)
and p(V→V0)≤p(V′→V0) if V′⊂V. In other words, the smaller the base
scale, the more hierarchical levels of the vegetation in a pixel are
involved, and more accurately the contributions of scattering orders
should be accounted to estimate canopy absorptive and reflective
area index earth system data record from multiple sensors. Part 1:
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properties (Knyazikhin et al., 1998b). The base scale therefore should
be chosen sufficiently large to minimize the number of hierarchical
levels and to achieve a good accuracy in the first order approximation.

In our approach, the structural variables are calculated for a ho-
mogeneous pixel of a single vegetation type only. The base scale
represents an individual plant (e.g., tree in a woody vegetation class)
or a group of plants (e.g., in grasses). When the spatial resolution of
the imagery decreases (i.e., the volume V0 increases), the degree of
vegetation mixing within the pixel increases. It means that different
structures can exist at the base scale and consequently more hier-
archical levels of the canopy structure may be present in the imagery.
This directly follows from Eq. (8), i.e., p(V′→V0)≥p(V′→V) if V0⊃V.
Assuming p(V→V0) varies continuously with the base scale V and the
resolution V0, an increase in the recollision probability due to increase
in V0 can be compensated by an increase in V such that p(V, V0)=p(V

P
,

V
P

0) where V
P⊃V and V

P⊃V0. Thus, the structural parameters can be
pre-calculated for a fixed base scale. The spectral BRFBS,λ (and
solutions to the “S” problem) can be adjusted for the resolution by
using the single scattering albedo ωλ(V ) at a scale V . The single
scattering albedo therefore allows us to scale up the simulated BRF to a
coarser resolution.

5. Algorithm adjustment for the sensors spectral bandwidth

For a given spectral band, the observed BRF is a weighted integral
of the spectral BRF over a spectral interval, i.e., the bandwidth. The
weight is the spectral response function that describes the sensitivity
of the sensor to a particular wavelength in the spectral interval. Both
the weight and the interval are sensor specific and vary with the
spectral band. Fig. 6 shows spectral response functions for red
(580 nm≤λ≤680) and NIR (725 nm≤λ≤1100) spectral bands for the
NOAA 16 AVHRR sensor (WWW1). The corresponding MODIS spectral
bands, 620 nm≤λ≤670 nm and 841 nm≤λ≤876, are much narrower
and shapes of the response functions (WWW2) differ from their
AVHHR counterparts (Fig. 6). The difference in the spectral band
characteristics is a factor that changes spectral signatures of pixels
measured by two sensors. In our parameterization, the structural and
radiometric components of the measured signal are separated. This
feature gives us a simple way to adjust the algorithm for sensor band
characteristics. Since the solution of the “BS-problem” is a major
source of information about the intrinsic canopy properties, we focus
on this component of the signal.
Fig. 6. Relative spectral response function in the red and NIR spe
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The measured reflectance, BRFM,λ, is a weighted integral of Eq. (2)
over a spectral interval α≤λ≤β, i.e.,

BRFM;λ Xð Þ ¼ R1 Xð Þ ω̄λ þ γ pð Þ ω̄2
λ

1−p ω̄λ
R2 Xð Þ: ð9Þ

Here ω̄λ ¼ ∫βαωλf λð Þdλ is the mean single scattering albedo; f(λ),
∫βα f λð Þdλ ¼ 1, is the spectral response function, and

γ pð Þ ¼ ∫βα
ω2

λ

1−pωλ
f λð Þdλ

� �
ω̄ 2

λ

1−p ω̄λ

 !−1

: ð10Þ

Note that ωλ
2 / (1−pωλ) in the integral term of Eq. (10) is a convex

function with respect to values of the single scattering albedo. It
follows from the Jensen's inequality (Gradshteyn & Ryzhik, 1980) for
convex functions that the numerator in Eq. (10) is no less than the
denominator, and thus, γ(p)≥1.

Values of ω λ and γ(p) depend on the variation of the single scat-
tering albedo ωλ with wavelength. If the single scattering albedo is
constant in the interval α≤λ≤β, then ω λ=ωλ and γ(p)=1 and no
adjustment is needed. Such a situation is typical forNIR spectral bands in
which the single scattering albedo is almost flat with respect to
wavelength. The single scattering albedo exhibits much stronger varia-
tion atwavelengths between 580 nmand680 nm. In this interval,ωλ is a
decreasing function with a local minimum at about 680 nm. The
averaging of ωλ over the red AVHHR spectral band results in a higher
value of ω λ than over the narrower spectral interval of the red MODIS
band. This effect tends to increase the measured AVHRR surface reflec-
tances at red compared to the corresponding MODIS values.

The variation of ωλ causes the ratio γ(p) to deviate from unity
which enhances the measured reflectance. Fig. 7 shows γ(p) for red
and NIR spectral bands for AVHRR and MODIS. The ratio is an in-
creasing function with respect to the recollision probability. For the
NIR spectral band, γ(p) is very close to unity, withmaximum deviation
being less than 0.5%. For the red spectral band, values of the ratio are
higher and can deviate from unity by 8%. However, the overall var-
iation in the ratio does not exceed 2%. In this example, the ratio was
calculated using a typical single scattering albedo of an individual leaf
and thus its values correspond to the leaf scale. Recall that the single
scattering albedo and the recollision probability are decreasing func-
tions of the base scale. It follows from Eq. (10) that the change in the
single scattering albedo by a factor k alters the ratio from γ(p) to
ctral intervals for the NOAA AVHRR-16 and MODIS sensors.

area index earth system data record from multiple sensors. Part 1:
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Fig. 7. The ratio γ(p) for red and NIR spectral bands for AVHRR andMODIS. Spectral response functions shown in Fig. 6 for AVHRR-16 andMODIS andmean single scattering albedo of
spruce needles (Huang et al., 2007) are used to calculate the ratio (“std” in the figure refers to standard deviation of γ(p)).
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γ(k·p). The adjustment of the reflectance for a coarser data resolution,
therefore, lowers its variation due to decreases in both the single
scattering albedo (k≤1) and the recollision probability.

To summarize, the problem of accounting for differences in
spectral characteristics between sensors can be reduced to finding
band dependent values of the single scattering albedo that compen-
sate for changes in ω λ due to differences in the bandwidths and de-
viation of γ(p) from unity due to variation in ωλ, where the latter is
dependent on the base scale. The single scattering albedo therefore is
the basic configurable parameter to adjust the simulated MODIS BRF
for the spatial resolution and spectral band composition of the AVHRR
sensor. Its value can be specified by fitting the simulated BRF to the
observed BRF values over different vegetation types during the green
peak season (Hu et al., 2003; Shabanov et al., 2005). This technique
will be demonstrated in the second paper of this series.
Fig. 8. Reflectance of vegetated surface in the red-NIR spectral plane. The cross symbols
mark the spectral space of the MODIS LAI/FPAR LUTs for a range of simulated LAI and
soil background brightnesses. The line with circles intersects the origin at an angle
defining the Simple Ratio. This line depicts different possible combinations of red and
near-infrared reflectances corresponding to different LAI values and soil spectral
reflectance patterns. The ellipse represents the inequality criterion for which the
solution set is obtained.
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6. Data information content and observation uncertainty

The difference in information content of MODIS surface reflec-
tance and AVHRR NDVI can be quantified as follows. The spectral
reflectance of a surface can be depicted as a point in the red-NIR
spectral space. The location of the point in the polar coordinate
system is given by the polar angle, α=tan−1(NIR/RED)= tan−1(SM),

and the radius r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NIR2 þ RED2

p
. Here RED and NIR represent BRF

values at red and NIR spectral bands. Pixels with the same NDVI are
located on a straight line (red line in Fig. 8). This line intersects the
origin of the spectral plane at an angle α. In the case of MODIS, the
surface reflectance data provide both the angle and location on the
line, while the AVHRR NDVI data provide the angle only.

The MODIS LAI/FPAR algorithm exploits the location information
by attributing each point in the spectral space to a specific physical
state that is characterized by a background brightness and LAI. A pixel
Fig. 9. Distribution of acceptable LAI values corresponding to the full range of possible
values of the radius (squares) and to a specific value of the radius (triangles). The mean
LAI values and their dispersions are taken as the LAI retrievals and their uncertainties.
The AVHHR and MODIS modes were applied to the MODIS surface reflectance using the
MODIS LUT.

area index earth system data record from multiple sensors. Part 1:
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can have a background ranging from dark to bright soils, and the LAI
can vary over a range for each specific instance of background bright-
ness. In order to meet consistency requirements formulated in Section
2, we implemented a specific mode in the MODIS algorithm (“AVHRR
mode”), in which the angle, α, and a range (rmin≤r≤ rmax) of valid radii
are taken as inputs. This range corresponds to variations of r for given
α as given by Collection 5 MODIS LUTs. While executing the algorithm
in the AVHRR mode, the following situations are possible (cf. Fig. 8):

• If rmin= rmax, the set of acceptable solutions coincides with that
generated by the operational MODIS LAI/FPAR algorithm.

• If rminb rmax, the set of acceptable solutions includes as subset
standard MODIS retrievals (Fig. 9).

The following merit function is used to select the set of acceptable
solutions in the MODIS-algorithm,

Δ2 ¼
NIR⁎−NIR
� �2

σ2
NIR

þ
RED⁎−RED
� �2

σ2
RED

: ð11Þ

Here NIR⁎ and RED⁎ denote values of measured surface reflectances,
while NIR and RED correspond to values of simulated reflectances. The
dispersions σNIR and σRED quantify combined model and observations
uncertainties at NIR and red spectral bands and are configurable pa-
rameters in our approach (Wang et al., 2001). The dispersions are rep-
resented as, σNIR=εNIR�NIR⁎ and σRED=εRED�RED⁎, where εNIR and εRED
are the corresponding relative uncertainties (Wang et al., 2001). The
variable Δ2 characterizing the proximity of measured surface reflec-
tances to simulated values has a chi-square distribution with two de-
grees of freedom. A value of Δ2≤2 indicates good proximity between
observations and simulations (Wang et al., 2001). All LAI and soil
reflectance values satisfying this criterion constitute the set of acceptable
solutions for a particular MODIS observation (NIR⁎ and RED⁎).

In the AVHRR-mode, the criteria Δ2≤2 is applied to each point
on the line (Fig. 8), i.e., for NIR⁎ ¼ r � sinα ¼ r � SM⁎=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ SM⁎2

p
, and

RED⁎ ¼ r � cosα ¼ r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ SM⁎2

p
. Here, SM⁎ is the input simple ratio

from AVHRR, and the radius r varies between rmin and rmax. Note that
the AVHRR mode does not increase computation time since in the
MODIS mode the inequality Δ2≤2 is checked for all combinations of
LAI and soil patterns.

Fig. 10 shows correlation between LAI retrievals using MODIS and
AVHHR modes of the algorithm. In both modes, the algorithm gen-
Fig. 10. Correlation between LAI values retrieved using the MODIS (horizontal axis) and
AVHHR (vertical axis) modes of the algorithm for dark (ρsur,RED=ρsur,RED=0.05), medium
(ρsur,RED=ρsur,RED=0.16) and bright (ρsur,RED=ρsur,RED=0.26) backgrounds. Surface
reflectances shown in Fig. 8 that correspond to selected backgrounds and simple
ratio (SM) calculated from the surface reflectances were used as input. The relative
uncertainties at red and NIR spectral bands were set to 0.3 and 0.15.
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erates similar mean LAI values given data from the same instrument.
The corresponding dispersions, however, can differ significantly, in-
dicating varying information content of retrievals. Recently, Hu et al.
(2007) compared MODIS and MISR LAI seasonal profiles retrieved
from data which have the same accuracy but different information
content (Fig. 4 in the cited paper). The use of multi-angle and spectral
information allows capturing seasonal LAI variations that are not
detected by single-angle views. We will explore the impact of the
information content on retrievals with respect to MODIS and AVHRR
retrievals in the second paper of this series.

7. Concluding remarks

This research introduces a physically based approach for generat-
ing LAI and FPAR ESDRs (this paper) and its application to developing a
long time series of these products from MODIS and AVHRR data
(second paper in this series). In general, ESDR algorithms ingesting
data from different instruments should account for differences in
spatial resolution, spectral characteristics, uncertainties due to atmo-
spheric effects and calibration, information content, etc. Our approach
to this problem is based on the radiative transfer theory of spectral
invariants. Accordingly, the canopy spectral BRF is parameterized in
terms of a compact set of parameters — spectrally varying soil reflec-
tances, single-scattering albedo, spectrally invariant canopy intercep-
tance, recollision probability and the directional escape probability. The
approach ensures energy conservation and allows decoupling the
structural and radiometric components of the BRF. According to this
theory, the single scattering albedo accounts for the dependence of BRF
on sensor's spatial resolution and spectral bandwidth. The parameter
characterizingdata uncertaintyaccounts for variation in the information
content of the remotemeasurements. Thus, the single scattering albedo
and data uncertainty are two key configurable parameters in our
algorithm. The algorithm supports two modes of operation: the
MODIS mode (retrievals from BRF) and the AVHRR mode (retrievals
from NDVI). In both cases, the algorithm simulates similar mean LAI
values, if input data from the same instrument are used. The
corresponding dispersions, however, differ significantly, indicating
varying input information content and related uncertainties (MODIS
BRF vs. AVHRR NDVI). Overall, the problem of generating LAI/FPAR is
reduced to the problem of finding values of data uncertainty and
single scattering albedo for which: a) the consistency requirements
for retrievals from MODIS and AVHRR are met; b) the difference
betweenMODIS andAVHRR LAI/FPAR isminimized; c) the probability
of retrieving LAI/FPAR is maximized. The implementation of this
algorithm and evaluation of the derived product will be detailed in
the second paper of this two-part series.
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Appendix A. Analytical expression of the “S” problem

The second term on the right hand side of Eqs. (4) and (5) describes
the contribution of multiple interactions between the ground and the
canopy to the total canopy BRF and absorptance. Let the downward
flux at the surface level be tBS,λ in the case of a black surface. The
incoming flux after interacting with the ground will act as the initial
source at the surface. The reflected radiation flux (tBS,λ ρsur,λ) will
interact with the canopy further and return to the surface (tBS,λ ρsur,λ
rS,λ), where ρsur,λ and rS,λ are the hemispherically integrated ground
and canopy reflectance, respectively. Let JS,λ(Ω) be the radiance
generated by isotropic sources (1/π) at the canopy bottom. Taking
into account that the intensity of sources at the first interaction is
area index earth system data record from multiple sensors. Part 1:
.014
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(π−1tBS,λ ρsur,λ), the corresponding radiance from the surface can be
expressed as (JS,λ(Ω) tBS,λ ρsur,λ.). The total radiance, S, can be expressed
as the sum of successive orders of scattering,

S ¼ tBS;λρsur;λ JS;λ Xð Þ þ ρ2
sur;λrS;λtBS;λ JS;λ Xð Þ þ ρ3

sur;λr
2
S;λtBS;λ JS;λ Xð Þ þ N

þ ρn
sur;λr

n−1
S;λ tBS;λ JS;λ Xð Þ;

where n is the order of scattering. The above geometric series can be
rewritten in the closed form

S ¼ ρsur;λ

1−ρsur;λrS;λ
tBS;λ JS;λ Xð Þ: ðA1Þ

The spectral invariant approximations for tBS,λ and JS,λ(Ω) are

tBS;λ Xð Þ ¼ t0 þωλT1 Xð Þ þω2
λT2 Xð Þ

1−ptωλ
; ðA2Þ

JS;λ Xð Þ ¼ J0 þωλ J1 Xð Þ þω2
λ J2 Xð Þ

1−pJωλ
; ðA3Þ

where, the term t0 is the zero order direct transmittance, T1(Ω)=τ1(Ω)i0
and T2(Ω)=τ2(Ω)pti0. τ1 and τ2 are probabilities that the scattered
photons can escape the lower boundary of the canopy. J0, J1(Ω) and J2(Ω)
are analogous to t0, T1(Ω) and T2(Ω). The term tBS,λ is the sum of the two
components. The first is the zero order or uncollided transmittance,
t0=1− i0,which is defined as theprobability that a photon in the incident
fluxwill arrive at the bottomof canopywithout suffering a collision. The
secondcomponent represents transmittance of thediffuse radiation, i.e.,
the probability that a photonwill exit the vegetation canopy through the
lower boundary after one or more interactions. The expression for dif-
fuse transmittance is obtained by hemispherically averaging Eq. (1) over
downward directions. The expression for spectral reflectance, rS,λ, is
obtained by hemispherically integrating Eq. (1), formulated for i0,S
instead of i0, over the upper hemisphere,

rS;λ ¼ ωλ R̄1;S þ
ω2

λ R̄2;S

1−pr;Sωλ
: ðA4Þ

This equation can be used to approximate canopy reflectance in the
case of the three-dimensional radiative transfer equation and non-
Lambertian surface by parameterizing ground reflective properties in
terms of an effective ground reflectance and anisotropy (Knyazikhin
et al., 1998a). The latter is used as a source at the canopy bottom that
generate the radiation field JS,λ.
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