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Prediction of Continental-Scale Evapotranspiration
by Combining MODIS and AmeriFlux Data
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Abstract—Application of remote sensing data to extrapolate
evapotranspiration (ET) measured at eddy covariance flux towers
is a potentially powerful method to estimate continental-scale ET.
In support of this concept, we used meteorological and flux data
from the AmeriFlux network and an inductive machine learning
technique called support vector machine (SVM) to develop a
predictive ET model. The model was then applied to the conter-
minous U.S. In this process, we first trained the SVM to predict
2000-2002 ET measurements from 25 AmeriFlux sites using three
remotely sensed variables [land surface temperature, enhanced
vegetation index (EVI), and land cover] and one ground-measured
variable (surface shortwave radiation). Second, we evaluated the
model performance by predicting ET for 19 flux sites in 2003.
In this independent evaluation, the SVM predicted ET with a
root-mean-square error (rmse) of 0.62 mm/day (approximately
23% of the mean observed values) and an R? of 0.75. The
rmse from SVM was significantly smaller than that from neural
network and multiple-regression approaches in a cross-validation
experiment. Among the explanatory variables, EVI was the most
important factor. Indeed, removing this variable induced an rmse
increase from 0.54 to 0.77 mm/day. Third, with forcings from
remote sensing data alone, we used the SVM model to predict
the spatial and temporal distributions of ET for the conterminous
U.S. for 2004. The SVM model captured the spatial and temporal
variations of ET at a continental scale.

Index Terms—AmeriFlux, evapotranspiration (ET), Moderate
Resolution Imaging Spectroradiometer (MODIS), support vector
machines (SVMs).
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I. INTRODUCTION

VAPOTRANSPIRATION (ET) is the sum of water evap-

orated and transpired from the land surface to the at-
mosphere. Its energetic equivalent is latent heat flux, which
is the energy required to evaporate water. ET is a crucial
component for energy, hydrologic, carbon, and nutrient cy-
cles and is a key mediator of ecosystem water status along
the soil-vegetation—atmosphere continuum. Consequently, ET
strongly controls processes occurring at leaf scales, such
as stomatal conductance and photosynthesis, to hemispheric
scales, such as midlatitude net primary production (NPP) [1].

Many semiempirical models have been developed to predict
ET from meteorological data at individual points. Examples
include the crop coefficient method [2], the Priestley—Taylor
equation [3], and the Penman—Monteith equation [4]. Although
these models are useful for calculating potential ET driven by
meteorological data at regional scales [5], accurate calculation
of regional actual ET is limited by requirements for extensive
parameterizations of highly variable factors such as maximum
stomatal conductance, soil water content, and roughness length.
Process-based models [6] can dynamically simulate some of
these parameters, especially stomatal conductance and soil
water stress, leading to potentially useful application at the
watershed scale [7]. However, process-based models are dif-
ficult to extend to large regions due to their complex structures
and requirements for complete coverage of frequently poorly
known land surface state variables, especially rooting depth and
soil texture.

Models based on or ingesting remote sensing data have
two central advantages over purely process-based models:
1) Satellite remote sensing offers broad spatial coverage and
regular temporal sampling and 2) requirements for spatial and
temporal parameterizations of water-constraining variables are
reduced or eliminated. Remote sensing models are thus theoret-
ically capable of accurately predicting actual ET at regional to
continental scales.

Currently, methods using remote sensing data for ET calcu-
lation can be divided into two categories, namely: 1) residual
methods and 2) vegetation index—surface temperature (VI—Ty)
methods [8]. Residual methods [9] calculate ET by subtracting
sensible heat flux from net radiation. Although conceptually
attractive, the technique requires sensible heat flux estimated
from land surface temperature (LST), which in turn is highly
sensitive to and limited by estimates of canopy aerodynamic
resistance. Although efforts to address this issue have been
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made [10], estimating canopy aerodynamic resistance remains a
major issue due to required knowledge of wind field, planetary
boundary information, and roughness length. On the other
hand, VI-T, methods utilize the scatterplot between VI and
T, [11]-[14], following the idea of Nemani and Running [15]
that the slope of the scatterplot can be used as an approximation
of surface resistance. However, deriving surface resistance from
the scatterplot requires a continuum of soil moisture (from dry
bare soil to saturated bare soil) and vegetation status (from
water-stressed full-cover vegetation to well-watered full-cover
vegetation) to provide a range of surface conditions.

The difficulties associated with the residual and VI-T;
methods have led researchers to investigate the pertinence
of models incorporating ground-based flux data collected by
networks such as the AmeriFlux eddy covariance flux [16] net-
work, which provides near-real-time observations of water and
carbon exchanges. However, direct interpolation of eddy co-
variance flux to a regional scale is problematic due to the sparse
distribution of flux towers. Researchers consequently have be-
gun to explore statistical models using remote sensing to ex-
trapolate eddy covariance water and carbon flux data to regional
scales. For example, Wylie et al. [17] related coarse-resolution
normalized difference vegetation index (NDVI) to carbon
fluxes in a sage-brush-steppe ecosystem, and Nagler et al. [8]
developed an empirical relationship for ET prediction over
large reaches of western U.S. rivers by combining re-
mote sensing with flux site measurements with a relative
root-mean-square error (rmse) of 25%. These studies estab-
lished the potential of using machine learning techniques to
extrapolate ET measured at eddy covariance flux towers to a
regional to continental scale.

The goal of this paper is to explore the application of support
vector machine (SVM) learning techniques for ET prediction at
the continental scale. To do so, we tuned and trained an SVM
to predict ET measured by the AmeriFlux eddy covariance
network using ground-measured and remotely sensed environ-
mental variables, tested the SVM using a withheld portion of
the flux data, and applied the final model for ET prediction over
the conterminous U.S. For the purposes of this research, tuning
and training are considered to occur simultaneously, i.e., param-
eters are tuned to different values and the SVM is retrained,
producing a new SVM weighting scheme for predictions (see
below and the Appendix). Testing refers to the production
of error statistics using a withheld data set. In the follow-
ing sections, we present: 1) a brief description of the SVM
technique; 2) SVM tuning and training, including a description
of the AmeriFlux [16] ET observations and the explanatory
variables LST, enhanced vegetation index (EVI), shortwave
radiation (SWR), and land cover; 3) results from independent
testing of the SVM; 4) comparison of SVM to neural network
and multiple regression; and 5) extrapolation of the SVM to the
conterminous U.S.

II. METHODS

A. SVM for Regression

Regression methods aim at constructing an approximate
function that maps an input domain to a real-valued output
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domain based on a set of data examples [18]. Commonly used
regression methods include conventional statistical method
such as multiple regressions and machine learning methods
such as neural network and SVM.

Multiple regression is a standard statistical method designed
to predict the values of a target concept from two or more
explanatory variables. It is conceptually simple but less suited
for highly nonlinear problems, especially those outside a pre-
scribed range of nonlinear approaches.

Machine learning is a subfield of artificial intelligence re-
lated to statistical learning and concerned with constructing
computer programs capable of developing rules and behaviors
without explicit guidance from human operators [19]. In the
machine learning process, a set of training examples that are
representative in the domain of interest are fed into a machine
learning program designed to learn the connection between
features of the examples and a specified target concept. Tuning
is often performed in the training process to find the optimal
model that not only matches the training examples but also
would have good generalization over test examples. The test
examples are a set of data examples independent of the training
examples for model evaluation. The test result is used as an
indicator of the model performance for new input features
where the values of the target concept are unknown.

Commonly used machine learning techniques for nonlinear
regressions are neural networks and SVM. A neural network
is a computing system motivated by the function of a human
brain [20]. It is widely used for regression approximation due
to its ability to approximate any nonlinear functions. Although
different algorithms have been proposed, multilayer percep-
trons with backpropagation (MLP-BP) remain the most popu-
lar algorithm for neural networks [20] despite suffering from
challenges in selecting proper network structure and finding
optimal solutions. For example, the performance of an MLP-BP
is related to the number of hidden layers, the number of neurons
in each hidden layer, activation functions, weight initializa-
tion method, learning rate, momentum, epoch size, complexity
penalty function, and regularization parameters. Furthermore,
MLP-BP learning is a steepest descent method that has the risk
of being trapped in a locally optimized solution [20].

The problems inherent to MLP-BP led researchers to look
for alternatives such as SVM for nonlinear regressions. We
fully describe SVM, the machine learning technique used in
this research, in the Appendix, and provide a brief explanation
as follows: SVMs were first developed by Vapnik [21], [22]
for solving pattern classification problems, but they have been
extended to the domain of regression approximation. For exam-
ple, Zhan et al. [23] used SVM for the nonlinear approximation
of the relationships between oceanic chlorophyll concentration
and remotely sensed marine reflectance. SVMs transform non-
linear regression into linear regression by mapping the original
low-dimensional input space to a higher dimensional feature
space using kernel functions satisfying Mercer’s condition [22].
A linear model is then constructed in the new feature space,
leading to a convex quadratic programming (QP) problem
guaranteed to have a global optimal solution.

The configuration of SVMs requires three types of parame-
ters, namely: 1) C for the cost of errors; 2) ¢ for the width
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Fig. 1. Land cover and the distribution of AmeriFlux sites. Land cover was
derived from MODIS land cover products (MOD12Q1) and regrouped into
forest and nonforest. The 19 sites used for both training (2000-2002) and
testing (2003) are shown as a plus symbol, whereas the six sites used for training
alone (based on data availability) are shown as diamonds.

of an insensitive error band (e-insensitive band); and 3) kernel
parameters. The parameter C' determines the tradeoff between
model complexity and the training error, with higher values
of C' decreasing the impact of the model complexity on the
optimization formulation. The parameter € controls the toler-
ance for training errors. Data examples that have training errors
smaller than € are ignored in the optimization formulation.
Finally, the kernel parameters vary with the selection of the
kernel function. See the Appendix for details.

B. Data

Our SVM analysis required two types of data, namely:
1) ground-measured ET from AmeriFlux sites [16] for training
and testing and 2) explanatory environmental data sets for both
the AmeriFlux sites and the continental application. Temporal
coverage was 2000-2003 for AmeriFlux sites and 2004 for con-
terminous U.S. application. For the continental application, all
inputs were resampled and/or reprojected to an 8-km resolution.

We acquired hourly or half-hourly ground observations of
ET (relative error of 25% [24]) from 25 AmeriFlux [16] sites
(Fig. 1; Table I) and processed eight-day averages to correspond
with satellite compositing intervals. Based on [25], we treated
missing values as follows: 1) If more than 70% of data were
missing in an eight-day period, we marked the period as miss-
ing; 2) if a particular time of day was missing in all eight days,
i.e., all eight 2 A.M. values were missing, we marked the period
as missing; 3) if neither condition 1 nor 2 was met, we filled
missing values with the mean from the nonmissing days, i.e.,
if a single 2 A.M. value was missing from the eight-day period,
we filled it with the mean of the remaining seven 2 A.M. values.

ET is a complex process influenced by a large suite of
edaphic, atmospheric, and physiological variables. In particular,
ET is related to LST, vapor pressure deficit (VPD), SWR, wind
velocity, vegetation pattern, and soil properties. VPD and SWR
are especially critical [26]. Based on the availability of remote
sensing data for real-time SVM implementation, we selected
LST, EVI, SWR, and land cover as explanatory variables.

We used LST as a surrogate for VPD because satellites do
not provide VPD directly and VPD has a linear relationship
with saturated vapor pressure derived from LST [27], [28].
For each AmeriFlux site, we used the MODIS 1-km daytime
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American Standard Code for Information Interchange (ASCII)
subsets [29] consisting of 7 x 7 km regions centered on the
flux towers. At each time step, we averaged the LST values
using the pixels with good quality (mandatory quality assurance
(QA) flag being zero in the QA data) [30] within the 7 x 7 km
regions to represent the values at the flux site. If none of the
49 values was of good quality, we treated the period as missing.
For the 2004 conterminous U.S. extrapolation, we obtained
the MODIS eight-day average 1-km daytime LST product
(MOD11AZ2; [30]), which has a deviation of +1 °C compared
with ground measurements [30], [31].

EVI was used to indicate vegetation structure and pheno-
logical status. As for LST, we used the ASCII subsets for the
AmeriFlux sites and the standard MODIS product (MOD13A2;
[32]) for continental application. The EVI accuracy is about
0.03, corresponding to the rmse observed when validating
against ground observations [33]. EVI is composited on a
16-day basis; for both the AmeriFlux and continental applica-
tions, we therefore assigned each 16-day composite EVI to the
corresponding two eight-day periods.

We used satellite- and ground-based inputs for SWR. For
continental application, we obtained daily 0.5° resolution SWR
from the Surface Radiation Budget (SRB) project (derived from
the Geostationary Operational Environmental Satellite [34])
and processed eight-day averages. The daily SWR has an rmse
of 1.4 MJ/m? /day (about 9% of the mean observed value) [35].
Due to the coarse resolution of remotely sensed SWR, we opted
to use ground-measured SWR for SVM tuning, training, and
testing over the AmeriFlux sites.

We obtained AmeriFlux land cover from the site descrip-
tions. Due to data availability, we regrouped the land cover
classes into two categories (Fig. 1), namely: 1) forest (ever-
green needleleaf forest, evergreen broadleaf forest, deciduous
broadleaf forest, and mixed forest) and 2) nonforest (savanna,
shrubland, grassland, and cropland). For the conterminous U.S.,
we obtained land cover from the MODIS land cover prod-
uct (MOD12Q1) [36] and again regrouped classes to forest
and nonforest (Fig. 1). The accuracy of MODIS land cover
is 70%—-85% by continental regions compared with ground
observations [37].

C. SVM Implementation

1) Tuning, Training, and Testing: Using AmeriFlux ET ob-
servations, we tuned and trained the SVM with 2000-2002 data
and tested the SVM with 2003 data (see below). Our input
variables were LST, EVI, SWR, and land cover, and our target
concept was ET. After removing eight-day periods in which
one or more of these variables were missing, we had a total
of 1591 data examples in the training set and a total of 552 data
examples in the test set. We scaled all the input variables to the
range of —1 to 1, as per standard SVM techniques to eliminate
the influence of variables with different absolute magnitudes.

We tuned the model as follows. First, we selected the
radial basis function (RBF) kernel, as opposed to linear,
polynomial, or sigmoid kernels, because it is highly flexible
and requires only one parameter, ¢ [38]. Second, we tuned
C (cost of errors), ¢ (width of insensitive error band), and
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TABLE 1
NAME, LONGITUDE, LATITUDE, AND LAND COVER OF EACH FLUX SITE IN THIS STUDY. ALL THE 25 SITES
LISTED ARE IN THE TRAINING SET. THE 19 SITES THAT ARE IN THE TEST SET ARE IN BOLD

Longitude Latitude

Name ) ) land cover Abbreviation
Audubon Research Ranch, AZ -110.510 31.600 shrublands AR
Blodgett, CA -120.633 38.895 needleleaf and mixed forest BL
Vaira Ranch, CA -120.951 38.407 grassland savanna VR
Niwot Ridge Forest, CO -105.546 40.033 needleleaf forest NR
Donaldson, FL (slash pine) -82.163 29.755 cropland DO
KSC Scrub Oak, FL -80.672 28.609 croplands KSC
Mize, FL -82.245 29.832 needleleaf forest MZ
Bondville, IL -88.292 40.006 croplands BO
Walnut River, KS -96.855 51.521 grasslands WR
Howland Forest, ME -68.727 45.207 mixed forest HOF
Sylvania Wilderness Area, MI -89.348 46.242 mixed forest SW
Goodwin Creek, MS -89.970 34.250 Dbroadleaf forest GW
Fort Peck, MT -105.101 48.308 grasslands FP
Duke Forest Pine, NC -79.094 35.978 mixed forest DF
Lost Creek, WI -89.979 46.083 mixed forest LC
Willow Creek, WI -90.080 45.806 mixed forest wC
Metolius Young Ponderosa Pine, OR -121.568 44,437 needleleaf forest MY
Harvard Forest, MA -72.172 42.536 broadleaf forest HF
University of MI (Michigan), MI -84.7140 45.560 mixed forest UM
Indiana MMSF, IN -86.413 39.321 broadleaf forest M
Duke Forest Hardwoods, NC -79.100 35.974 mixed forest DFH
Tonzi Ranch, CA -120.950 38.419 grass savanna TR
Mead Irrigated Nebraska, NE -96.286 41.099 croplands Ml
Mead Rotation Nebraska, NE -96.281 41.099 croplands MR
Mead Rainfed Nebraska, NE -96.440 41.099 croplands MRA

o (kernel parameter) using a grid search with a three-fold
cross-validation training process [38]. In this approach, the
training examples are randomly divided into three nonover-
lapping subsets; training is performed three times on two
of the subsets, with the remaining subset reserved for test-
ing; parameters yielding the lowest cross-validation errors
are selected. We initially conducted a coarse grid search
for C (271,20,21 ... 2%), ¢ (25,2745 274 ... 272), and
o (273,2725 272 . 2%) and identified the C, ¢, and o com-
bination producing the lowest mean cross-validation rmse. We
then used a progressively finer grid search until the variance of
the rmse was smaller than 0.01. Third, using the selected C,
¢, and o, we conducted a final training of the SVM with the
2000-2002 AmeriFlux data (see the Appendix for details).

Finally, we tested the trained model on the test set for three
groups, namely: 1) forest; 2) nonforest; and 3) forest and non-
forest combined. The testing data set (2003) was from 19 flux
sites (nine forest and ten nonforest sites) where measurements
were available. We evaluated SVM performance using rmse,
R2?, scatterplots of predicted versus observed ET, seasonal
variations between the predicted and observed ET, and residual
analysis.

2) Contribution of Each Input Variable on ET Variations:
We examined the contribution of each input variable on SVM
ET predictions by sequentially removing one of the input
variables (LST, EVI, SWR, and land cover) and replicating the
cross-validation training process. We assessed the contribution
of each input variable with the mean cross-validation rmse and
R? from the cross-validation training process.

3) Comparison With Other Methods: We compared the per-
formance of SVMs to that of: 1) MLP-BP and 2) multiple re-

gression using all the input variables (LST, EVI, SWR, and land
cover) on the training set. To conduct a statistical comparison,
we employed a ten-fold cross validation on the training set,
rather than the three-fold cross validation employed in the tun-
ing/training process described in Section II-C1. We randomly
divided the 1591 training examples into ten nonoverlapping
subsets and trained the SVM, MLP-BP, or multiple regression
ten times on nine of the subsets with the remaining subset
reserved for testing. We configured MLP-BP with one hidden
layer, sigmoid activation function, random weight initialization,
and weight decay regularization. We set the regularization
parameters to 1 and the epoch size to 64. Other parameters
(the number of neurons in the hidden layer, learning rate, and
momentum) were selected with the training process used for
developing the SVM model. Based on [19], we calculated the
rmse of the ten test sets for each of the three algorithms.
Paired Student’s t-tests (95% confidence level), a statistical
test used to determine whether there is statistical difference
between the mean of two samples, was then conducted be-
tween: 1) SVMs and neural network and 2) SVMs and multiple
regression.

4) Generalization From AmeriFlux Sites to the Contermi-
nous U.S.: Based on research showing that the AmeriFlux
network is representative of conterminous U.S. ecoregions [39]
and that the 25 flux sites in this study included most of the
active flux sites in the AmeriFlux network (Fig. 1), we reasoned
that the knowledge learned at flux sites can be extrapolated to
the conterminous U.S.. To generalize the model learned from
flux sites to the conterminous U.S., we first conducted a new
training of the SVM with the entire 2000-2003 data set using
the selected C, ¢, and o. The trained model was then used to



3456

ET at Flux Sites in 2003 ET at Flux Sites in 2003

o

nonforest forest

o

w

N

*+ “RusE:0.57
. R? :0.81
N :304

2 3 4 5
Observed 8-day Average ET (mm/day)

RMSE : 0.68
f .. R? 1067
N :248

0 1 2 3 4 5
Observed 8-day Average ET (mm/day)

Predicted 8-day Average ET (mm/day)
Predicted 8-day Average ET (mm/day)

o

0 1
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% Predicted ET and the Residual in 2003 % Predicted ET and the Residual in 2003
o o

g nonfores: E/ forest

k=) 2 5 2 .

3 g : et

5 L= BT SUL TI

4 o -a"'.o,-"\'. .

v = obg "_n._‘:_ 2 Ses pnem _______|
o © R N el A

g ¢ ) <3 .:a.'...-‘. KO

8 2 e el

% 2 % 2 * oo

o ©

b=l 3

% 5

x © 1 2 3 4 5 & 0 1 2 3 4 5

Predicted ET (mm/day) Predicted ET (mm/day)

Fig. 3. Scatterplots of SVM-predicted ET versus residuals (observed —
predicted) in 2003 for forest and nonforest sites.

investigate the spatial and temporal distributions of ET over the
conterminous U.S. for 2004.

III. RESULTS AND DISCUSSION
A. AmeriFlux Sites

Using the full input training set of LST, EVI, SWR, and
land cover, the parameter combination of C' = 8.0, £ = 0.18,
and 0 = 1.41 produced the smallest mean cross-validation rmse
of 0.54 mm/day and an R? of 0.78. Using these parameter
values and the trained SVM, the testing on the 2003 AmeriFlux
data produced an rmse for the forest and nonforest combined
sites of 0.62 mm/day with an R? of 0.75. Nonforest sites
had 0.57 mm/day rmse and 0.81 R?, whereas forest sites had
0.68 mm/day rmse and 0.67 R? (Fig. 2), indicating that the
SVM performed better in nonforest than in forest sites. Fur-
thermore, the residuals (observed — predicted ET) were signif-
icantly lower in nonforest than in forest sites (¢-test, p < 0.05).
We speculate that the low performance over forest sites might
come from the saturation of optical remote sensing data over
dense canopies such as forest. Analysis of the relationships be-
tween predicted ET and the residuals (Fig. 3) revealed that the
residuals were not randomly distributed. Low prediction errors
were associated with low ET values, whereas high prediction
errors were associated with high ET values. This indicated that
the lack of variables not included in the SVM model affected
the ET retrieval performances.

The SVM represented most features of measured ET sea-
sonality in the 2003 AmeriFlux test data (Fig. 4). For some
specific sites, episodes of under- or overprediction occurred.
For example, the SVM overpredicted ET at Willow Creek in
June 2003 when the observed eight-day average ET at this site
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Fig. 4. Comparison of the seasonal variations of the observed eight-day
average ET (open circle) and the predicted eight-day average ET (closed
square) at flux sites for 2003.

dropped from 2.50 to 0.49 mm/day. Similar declines did not
occur in measured Willow Creek ET during 2000-2002, yet the
seasonal variations of LST, EVI, and SWR during 2003 were
similar to those during 2000-2002. Therefore, we concluded
that ET at Willow Creek in June 2003 was likely to be driven
by other factors such as unusual wind and/or soil moisture
patterns. Snow cover has the potential to produce aberrantly
high EVI values, which in turn would lead to ET overprediction.
This phenomenon may account for prediction errors at Sylvania
Wilderness Area in the spring and early summer of 2003.

Underprediction errors occurred in the summer of 2003 at
the University of Michigan and at Fort Peck. Although factors
not explicitly included in the SVM, such as soil moisture, may
account for some underprediction errors, we speculate that use
of eight-day mean conditions may inadequately represent the
effects of nonlinear ET processes, i.e., the SVM drivers of
LST, EVI, and SWR may be incapable of producing extremely
high ET values occurring during short periods of superoptimal
physiological and boundary layer conditions.

Analysis of the mean observed and predicted ET showed
that SVM performance varied by flux sites and land cover
(Fig. 5). The predicted and observed mean ET was within 30%
of the 1:1 line for all sites except Willow Creek, Fort Peck,
and Sylvania Wilderness Area. High overprediction occurred
at Sylvania Wilderness Area (62%) and Willow Creek (100%),
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TABLE 1II
IMPACT OF REMOVING ONE OF THE FOUR INPUT VARIABLES ON
THE PREDICTING PERFORMANCE OF SVM ON ET. THE RESULTS
SHOWN ARE THE AVERAGE FROM THREE-WAY CROSS
VALIDATION ON THE TRAINING SET

Variable RMSE R’ c € o
removed (mm/day)

None 0.54 0.78 8.00 0.18 1.41
LST 0.64 0.72 16.00 0.25 2.00
EVI 0.77 0.59 4.00 0.18 5.66
SWR 0.75 0.62 8.00 0.25 2.00
LC 0.60 0.75 16.00 0.25 2.83

under study to the seasonality of absolute and relative ET

prediction errors.
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Fig. 5. Observed and predicted mean ET across flux sites. Forest sites are
marked as circles and nonforest as squares. Error bars are standard deviations
of the observed and predicted eight-day average ET. Abbreviations of flux sites

refer to Table I.

14 80
g . o RMSE 2
T 12 Lt = RMSE (%)|70 =
£ o m
~ 10 - =
oo ° . 160 =
E) 0.8 ° OOO o) L. 5
2 ®0 9, 0 {50 §
o 0. == ==n "=
a 06 .= e » %0 40 %
[0 o) fe) B >
"£6 0.4 0O Fm -.- .. a 0 g, g
W 0240 o° Coof30 1
g ° . 3
T 00 ; i . 20

100 200 300

yearday

Fig. 6. Seasonal variations of ET prediction errors averaged across all flux
sites. Left axis shows rmse error expressed as millimeters per day; right axis
shows rmse error expressed as a percent of average observed ET.

whereas high underprediction occurred at Fort Peck (34%). In
terms of land cover, the predicted mean ET was within 20%
of the 1:1 line for all nonforest sites except Vaira Ranch and
Fort Peck, but of the forest sites, only Lost Creek, Howland
Forest, and Goodwin Creek were within 20% of the 1:1 line.
The overall prediction error was 23%, which was close to the
25% flux observation errors [24] and near the 20% error limit
for ET prediction using remote sensing methods [24]. Given the
heterogeneity of the AmeriFlux data and the simplicity of the
model inputs, model performance was promising.

Residual analysis showed that rmse averaged across all
AmeriFlux sites showed a strong seasonality (Fig. 6).
In absolute magnitudes, winter had low prediction errors
(~0.2 mm/day), whereas warm season errors often exceeded
0.8 mm/day. Yet when expressed as a percentage of rmse to
the mean observed ET, the pattern was reversed: Winter errors
were often above 50%, but summer errors rarely exceeded
40%. The results were consistent with Fig. 3, where high/low
rmse was correspondent to high/low ET. We suspected that the
measurement error from the explanatory variables had additive
or multiplicative influence on ET prediction. Thus, potential
users should carefully consider the sensitivity of the system

B. Contribution of Each Input Variable on ET Variations

Removal of EVI caused the largest performance reduction in
SVM cross-validation error statistics (Table II): rmse increased
from 0.54 to 0.77 mm/day and R? decreased from 0.78 to
0.59. Removal of SWR was nearly as important, leading to
an increased rmse of 0.75 mm/day and a decreased R? of
0.62. Removal of LST produced comparatively minor changes:
rmse rose to 0.64 mm/day and R? fell to 0.72. The rmse only
increased by 0.06 mm/day with removal of the land cover.
Therefore, we concluded that EVI and SWR alone captured
most of the ET variations. However, our input variable ranking
was based on the eight-day averages within 7 x 7 km regions.
Thus, potential users should be cautious on the relative im-
portance of the input variables reported in this study because
the importance may change with different spatial and temporal
resolutions.

C. Comparison With Other Methods

SVMs outperformed other techniques (Table IIT). SVM rmse
was smaller than neural network and multiple regression rmse
in the ten trials. The 95% confidence interval of the difference in
rmse was —0.043 4 0.036 (—0.079 to —0.007) between SVMs
and neural networks and —0.141 £+ 0.033 (—0.174 to —0.108)
between SVMs and multiple regression. We thus conclude
that for ET prediction, SVMs perform significantly better than
neural networks and multiple regressions.

D. Generalization From AmeriFlux Sites to the
Conterminous U.S.

The purpose of our conterminous U.S. application was to as-
sess qualitatively whether or not the SVM technique produced
spatiotemporal ET estimates consistent with expected patterns.
In the four eight-day periods in 2004 representing spring,
summer, fall, and winter over the conterminous U.S., the SVM
model trained at the AmeriFlux sites generally captured the
expected ET features (Fig. 7). Temporally, March ET was low
because of low temperature and low radiation; July ET was high
because of high precipitation, peak vegetation, and intensive
radiation; September ET dropped as vegetation senesced; and
December ET was lowest with coldest temperatures and lowest
radiation. Spatially, March ET was high in California, Florida,
and Texas due to high temperature; July ET was highest in
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TABLE III
RMSE (IN MILLIMETERS PER DAY) OF SVM, NEURAL NETWORK, AND MULTIPLE REGRESSION
FROM TEN-FOLD CROSS VALIDATION ON THE TRAINING SET

Trials 1 2 3 4 5 6 7 8 9 10 mean
SVM 0.56 058 046 058 051 057 056 046 055 055 054
Neural network 064 064 052 060 055 065 057 055 062 057 058
Multiple regression 071 077 062 063 064 073 068 067 070 064 0.68
1
March 5, 2004 July 3, 2004
- March 12, 2004 - July 10, 2004 =g
September 21, 2004 December 2, 2004
- September 28, 2004 - December 9, 2004
mm/day
|

Fig. 7. SVM-predicted eight-day average ET for the continental U.S. in

March 5-March 12, July 3-July 10, September 21-September 28, and

December 2-December 9 of 2004. ET greater than 4.0 mm/day was cut off to 4.0 mm/day for display purposes.

the eastern U.S., due to high moisture and energy availabil-
ity; and September ET showed patterns consistent with early
phenological decline of agricultural regions in the Mississippi
River valley and Midwest. During all periods, predicted ET
followed expected elevational patterns, e.g., mountainous areas
had higher ET than surrounding low elevation regions in July.

At least four factors may have limited the continental gen-
eralization: 1) the use of ground-observed SWR at flux sites
for model development but the use of 0.5° resolution SRB-
derived SWR for the conterminous U.S. tended to smooth ET
variations; 2) the use of 16-day composite EVI for eight-day pe-
riods also tended to smooth ET; 3) the 25 flux sites included in
this study may not fully represent the spatiotemporal variation
of actual ET; and 4) the observed ET may have measurement
errors jeopardizing the model generalization ability. Additional
flux data would mitigate some of these issues, as would finer
resolution EVI (temporally) and SWR (spatially). In summary,
although there are potentially confounding factors and it is
difficult to validate ET distribution over the conterminous U.S.,
our results show that the SVM trained at AmeriFlux sites gener-
ally captured the expected spatiotemporal variations of ET over
the conterminous U.S. This result, although not quantitatively
conclusive, strongly suggests that SVM models trained at flux
sites can be generalized to larger regions.

IV. CONCLUSION

Using a combination of ground-measured ET, machine
learning techniques, and remotely sensed inputs, we developed
a technique to predict ET over the conterminous U.S. with an

average test error of 0.62 mm/day. We found that EVI and SWR
were more important than LST or land cover for ET prediction,
suggesting that finer temporal resolution for EVI (possibly
by including Terra and Aqua satellites) and finer spatial
resolution for SWR could substantially enhance regional and/or
continental ET estimates. The method can also be improved by
increasing the number of ET ground observations. A central
limitation of the SVM technique is that the knowledge learned
is encoded as weights that are not directly comprehensible
to humans. However, methods exist with which to convert
the structure learned by SVMs to a more understandable
format, such as rules, thus enhancing our understanding of ET
processes at different scales. With these improvements, the
combination of satellite data with ground observation of ET
through machine learning should be able to provide prediction
of ET with sufficient accuracy and timeliness for application in
regional to continental natural resource management services
and serve as a supplemental tool for existing ET retrieval
methods. Furthermore, based on the product accuracy and
the spatiotemporal scale considered in this study, the SVM-
based ET prediction can also be useful for documenting
hydroecological models at regional to continental scales.

APPENDIX
SVM FOR REGRESSION

SVMs are based on the theory that a multidimensional
input space is more likely to be linearly separable in a new
feature space if the transformation is nonlinear and the new
feature space has higher dimensions than the original one [40].
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Fig. 8. One-dimensional linear regression with e-insensitive band.

Therefore, the original nonlinear problem can be solved using
linear models in the new feature space. Given a set of training
examples {(x;,y;), 1 <i < n}, where x; € R (£ > 1) is the
input, y; € R is the target concept, and n is the number of train
examples, SVMs map the input space x to a higher dimensional
feature space ¢(x) using a nonlinear transformation function
¢ and construct a linear model in this new feature space as
follows:

y=/f(x)=(w-¢(x)+b (1)

where w is the weight vector, b is the noise, and (w - ¢(x)) is
the dot product between w and ¢(x). The task is then to find
a functional form for f, which can predict new cases that the
SVM has not seen before known as generalization. This can
be achieved by training the SVM on a sample set (training set)
through a sequential optimization of a loss function (error func-
tion). A e-insensitive loss function L (y, x, f(x)) proposed by
Vapnik [22] is defined as follows:

. o, ifly — f(x)| <e
L (yvxa f(X)) - { |y — f(x)‘ — €&, otherwise.

This loss function ignores errors when the difference between
the predicted value and the true value is smaller than a threshold
e. Fig. 8 shows one-dimensional linear regression function with
e-insensitive band. The errors of data points within the band
are ignored. Data points out of the e-insensitive band are called
support vectors, and only support vectors contribute to the
optimization solution.

Unlike neural networks that have the risk of being trapped
in a local minimum, the generalization of an SVM regression
model is optimized by minimizing the generalization error
bound—the combination of the training error (empirical risk)
and model complexity (structural risk) as follows [18]:

2

NI SRR
Minimize §HWH +CZL (vir i, f(xi)) €)

i=1

where ||w|| is the Euclidean norm of the weight vector. Mini-
mizing |w|| is equivalent to minimizing the model complexity.
The parameter C' is the cost of errors. It determines the tradeoff
between the model complexity and the training errors. If C is
too large, then the model complexity part in the optimization
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formulation is ignored. On the other hand, if C is small,
then the structural risk has more influence in the optimization
formulation.

By introducing two nonnegative slack variables for each
data point to measure the deviation of each point outside the
e-insensitive band, the optimization problem of (3) can be
equivalently represented as follows:

Swl? 03 (6 +€)

Minimize
b€ € P
Subjectto  ((w-¢(x;))+b) —y; <e+¢&

yi— (W o(xi) +b) <e+§

5275:207 Z:]-van (4)

where ||w|| and C are defined in (3), and & denotes the
predicted value to be above the true value by more than € and
& to be below the true value by more than €.

The optimization problem presented in (4) can be solved
using the technique of Lagrange multipliers, and the functional
form of (1) can be represented as follows:

y=/fx) =) (aj — ) K(x;,x) + b (5)

i=1

where K (x;,x) = (¢(x;) - ¢(x)) is the kernel function satis-
fying Mercer’s condition [22], and «; and o are Lagrange
multipliers obtained by solving the following QP problem:

n

a) — 5 O (o~ )

n
Maximize E Vi (o —
o,
4,j=1

i=1

x K(x;,%;) (a; - o) — 52(0@‘ + ;)
i=1

Subject to Z (af —a;) =0,
i=1

0<ay, a; <C,i=1,...,n

(6)
whereas b is chosen such that

for any 7 with 0 < (o} — ;) < C.
(7

The QP problem represented in (6) is a strict convex
quadratic optimization problem that has a global optimal so-
Iution. In the functional form represented in (5), only support
vectors have nonzero (a; — ) [22]. This is due to the use of
e-insensitive loss function. The parameter € controls the width
of the e-insensitive band. It affects the number of support
vectors used to construct the regression function. If the ¢ is
too large, then fewer support vectors are selected, resulting in a
sparse representation of the solution. On the other hand, if € is
too small, then more support vectors are selected, resulting in a
complex model.

It is difficult to find an analytical form of the nonlinear
transformation function ¢. However, there is no need to know

(W-p(xi)) + b —yi=—¢
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¢ explicitly. In the representation (6), only the dot product
K(x;,%x;) = (¢(x;) - #(x;)) is necessary for the optimization
process, and we can generalize the dot product to other kernel
functions. For example, a commonly used kernel function is
RBF, which has the following form:

K x5) = {6000 ) = exp = o5 s~ 1)

where o is a priori. Therefore, the dot product is computed in
the new feature space without explicitly knowing the features
in the new feature space.

Other kernel functions include linear, polynomial, and sig-
moid. However, RBF is often preferred because linear kernel
is only appropriate for linear problems and polynomial kernel
has computational difficulties. Sigmoid kernel function is not
widely used because it is not well studied and it behaves similar
to RBF to some extent [38].

As a summary, SVM regression use kernel function to map
the input space to a higher dimensional feature space implicitly.
A linear model is then constructed in this new feature space us-
ing e-insensitive loss while trying to reduce model complexity.
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