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A rank based algorithm for aggregating land cover data sets to coarser resolutions with 

minimal change in information content is presented in this paper. The method uses patterns 

in a fine resolution image to preferentially aggregate blocks that show homogeneity, 

majority and adjacency. Disappearance of classes is avoided by predefining the number of 

pixels of each class that should be present in the coarser resolution data set. The ranked 

aggregation algorithm is compared with two aggregation techniques - majority aggregation 

and random aggregation. The ranked aggregation method is shown to better conserve the 

information presented in the original image relative to the other algorithms using spatial 

pattern metrics quantifying class proportions, contagion, and fragmentation. Similarity 

metrics such as Euclidean distance and Czekanowski coefficient indicate images 

aggregated using ranked aggregation to be more similar to the original image than 

aggregation results from other techniques. Ranked aggregation is also shown to be 

associated with less unpredictability than its alternatives and the number of blocks assigned 

to a minority class is found to be negligible. 

 

Keywords: Ranked aggregation algorithm; Map; Scale; Spatial pattern; Similarity; Class 

proportions; Contagion; Fragmentation; Euclidean distance; Czekanowski coefficient; 

Accuracy; Unpredictability 
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1. Introduction 

 

The understanding and modeling of natural and anthropogenic processes which affect the 

Earth’s environment require the production of land cover and land use maps at broad 

spatial scales (Mayaux and Lambin, 1995). For global scale research, data aggregation is 

primarily practiced for “scaling up” environmental analysis or models from local to 

landscape, regional, or global scales (Moody and Woodcock, 1996). Satellite data typically 

available at fine resolutions need to be coarsened to represent the spatial characteristics 

(spatial pattern, spatial autocorrelation, etc.) at scales used by global models. 

The scale of data is associated with its resolution, which is defined as the area 

represented by one single pixel (DeMers, 1997), or more generally, as the degree to which 

small objects are distinguishable (Forman and Godron, 1986; Forman, 1997). The scale is 

often expressed in terms of grain and extent, describing the minimum spatial resolution of 

the data and the width of the study area, respectively (Milne, 1991; McGarigal and Marks, 

1995; Hargis et al., 1998). The grain then determines the lower limit of what can be studied. 

Coarsening the spatial resolution leads to a loss of spatial details at a rate that depends on 

the spatial structure or heterogeneity of the landscape (Woodcock and Strahler, 1987; 

Townshend and Justice, 1988; Moody and Woodcock, 1994, 1995, 1996). Landscape 

patterns, as observed by digital images generated by remote sensing appear or disappear at 

different scales (Farina 1998). Rare land cover types are lost when resolution becomes 

coarser; patchy arrangements disappear more rapidly with decrease in the resolution than 

contagious ones (Turner et al., 1989). This phenomenon is usually more pronounced when 
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the elements composing the spatial pattern (e.g., patches) are scattered and are as small as 

or smaller than a pixel of the aggregated image. As a result, the use of coarse resolution 

images poses divergent problems in the estimation of cover type areas and the assessment 

of its accuracy.  

Aggregating data to a coarser resolution is often preferred because certain spatial 

patterns will not be revealed until the data are displayed at a coarser scale (e.g. Seyfried and 

Wilcox, 1995). It is well recognized that any aggregation method may lose certain spatial 

details. However some methods retain statistical characteristics of the data better than 

others (Bian and Butler, 1999). A question then arises as to how these aggregation effects 

can be evaluated.  

Aggregation reduces the number of pixels in the image for a fixed spatial extent. Each 

pixel consequently represents a larger area. This can alter the statistical and spatial 

characteristics of the data. Models that use aggregated data become scale-dependent, i.e., 

their predictions differ when input data of different resolutions are used (Bian and Butler, 

1999). Although this effect is well-recognized by the GIS, remote sensing, and other 

science communities that use spatial information (e.g., Moody and Woodcock, 1994, 1995; 

Marceau and Hay 1999; Milne and Cohen 1999), there are very few papers on the effects 

caused by different aggregation techniques. Studies that require aggregation often employ 

the most convenient method without taking all the effects into account. This may 

jeopardize the integrity of studies as well as subsequent decision-making process.  

The goal of this study is to develop and test an algorithm that generates coarse 

resolution land cover maps at continental scale but minimizes changes relative to the 

original image. A series of 1 km and coarser maps of North American land cover are 
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generated. The algorithm performance is quantified in terms of spatial metrics commonly 

used in landscape ecology. This approach has two justifications. First, it was reported that 

class spatial pattern influences information change during aggregation (Moody and 

Woodcock, 1994, 1995). Second, it is accepted that land cover pattern is related to 

landscape function, a central hypothesis of landscape ecology, known as the pattern/process 

paradigm (Coulson et al., 1999). Using spatial patterns, we can document precisely the way 

certain algorithms alter or conserve certain characteristics of the spatial information 

presented in the original image.  

The objectives of this investigation are – (a) to develop a new spatial aggregation 

algorithm that represents fine resolution data at a coarser resolution with minimal 

information loss, and (b) to evaluate the new algorithm through comparison to the random 

aggregation algorithm and the most widely used majority aggregation algorithm; this 

evaluation is performed through spatial metrics and parameters describing the predictability 

and accuracy of the aggregation results.  

 

2. Data set and methods 

 

2.1 MODIS land cover map 

 

The International Geopsphere-Biosphere Programme (IGBP) set of 17 land cover classes 

(Belward et al., 1999) are provided by the MODIS land cover product. Figure 1 shows an 

image of the Northern American data set used in this paper. Table 1 shows the percentage 
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of each class in the image. The water class dominates the image making up 68% of the total 

number of pixels. The areal percentage of other classes varies between 0.001% and 7%. 

The size of the image allows us to avoid rounding-up when aggregating it to 2, 4, 8, 16, 32, 

64 and 128 km resolution consecutively or non-consecutively. The number of coarse pixels 

in each row and column as a function of the image resolution is given in table 2.  

 

2.2 Metrics to represent image information 

 

Characteristics of landscape patterns are usually expressed in terms of connectedness (e.g. 

contagion, fragmentation), diversity (e.g. Shannon diversity, Simpson index), and image 

heterogeneity (e.g., class area evenness). We examined how these characteristics change 

with resolution and algorithm by calculating a series of metrics that adequately reflect 

pattern features. The landscape pattern metrics selected for this study quantify the relative 

percentage of different land cover classes, their spatial adjacencies, and represent overall 

image properties. Most metrics used here are from landscape ecology.  

Pattern differences between the aggregated images and the original 1 km data are 

expressed as 

 

1

1

M
MMR r −=   (1) 

 

where  are the metrics of aggregated image at spatial resolution r and  is that of 

original image at 1 km spatial resolution.  

rM 1M
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2.2.1 Metrics based on class proportions. The distribution of patterns and their areas are 

important characteristics of any image. Conservation of areas in the aggregation procedure 

is consequently a prerequisite to limit pattern change since pattern can be defined as spatial 

distribution of area. We use the concept of class area evenness to quantify the presence of 

classes relative to each other. The length of the Lorenz curve (L) is used to assess the 

degree of evenness (Lorenz 1905; Rousseau et al., 1999), which is calculated as follows. 

The class areas are replaced with relative values which are then ranked in ascending order. 

Let ( ) represents the relative area of i-th class and z be the total number of 

classes. The cumulative function of area distribution is given by  

ip 1−≥ ii pp

 

∑
=

=
i

j
ji pp

1

*   (2) 

 

The set of pairs ( , i/z), i = 1, 2, …, z, is termed the Lorenz curve. To construct it, values 

of  are plotted on the ordinate against its rank number normalized by the total number of 

classes on the abscissa. The length of the Lorenz curve L can be calculated from the graph 

as (Bogaert et al., 2000b),  

*
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*
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In case of perfect evenness, i.e. ji ppzji =≤∀ :, , the curve coincides with the diagonal 

(1:1 line) and 2=L . For a series in which a certain area dominates over 

others, . Evenness can be interpreted as a partial order (Rousseau et 

al., 1999) and thus adequately represented by a Lorenz curve (Taillie 1979).  

2,: ≈>>≠∃ Lppji ji

Note that curves can cross each other in which case evenness can not be used for they 

can generate identical L values (Bogaert et al., 2000b). We use the Shannon ( ) (Shannon 

and Weaver, 1949) and Simpson diversity ( ) (Simpson 1949) indices to characterize the 

diversity of the classes. These are defined as  

1H

2H

 

∑
=

−=
z

i
ii ppH

1
1 )ln(   (4) 

∑
=

−=
z

i
ipH

1

2
2 ln   (5) 

 

The higher their values the more diverse the image is. The diversity metrics depend on two 

variables – the richness component shows the number of classes present and the evenness 

component quantifies the distribution of the image pixels over the classes. The Shannon 

index is more sensitive to the richness component while the Simpson index is relatively less 

sensitive to richness and places more weight on the common classes (McGarigal and Marks 

1995). These indices, therefore, can show considerable variation in response to changes in 

landscape richness and evenness.  
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The proportion estimation error ( ) is used as a fourth descriptor. This metric shows 

whether an aggregation procedure results in an over- or underestimation of class areas. This 

variable is defined as (Moody and Woodcock, 1994) 

iE

 

fi

fici
i p

pp
E

−
=   (6) 

 

where  and  are relative areas of class i at the coarse and fine resolutions. An overall 

effect of the aggregation procedure of class proportion is given by the mean error over 

classes and its standard deviation. 

cip fip

 

2.2.2 Contagion metric. Contagion (C) measures the degree to which the image is 

composed of a few large or several small patches (O’Neill et al., 1988). It ranges between 0 

and 1. High values indicate that the image is clumped into a few large patches. The metric 

accounts for adjacency and is expressed in terms of conditional probabilities  of class i 

given that one of its neighboring pixels belongs to class 

jip ,

)( jij ≠  as  

 

)ln(
)ln(2

11 ,
1 1
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+=   (7) 

 

where z is the number of classes in the image. Contagion measures both class interspersion 

(intermixing of classes) as well as class dispersion (the spatial distribution of the class). It is 
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one of the most frequently applied and commented landscape metrics in landscape ecology 

to characterize landscape pattern (e.g., Schumaker 1996; Hargis et al., 1998; O’Neill et al., 

1999).  

 

2.2.3 Monmonier fragmentation metric. Fragmentation describes the spatial scatter of 

pixels. Measurement of class fragmentation is still a subject of debate (Bogaert et al., 2002; 

Bogaert 2003) but a tendency towards simpler metrics quantifying components of complex 

spatial patterns was suggested (Giles and Trani, 1999). Therefore, a simple fragmentation 

metric (F) based on the grouping of adjacent pixels of the same class into patches is used in 

this study (Monmonier 1974; Johnsson 1995),  

 

1
1

2

1

−
−

=
m
mF   (8) 

 

where  and  are numbers of patches and pixels, respectively. This metric varies 

between two extremes, 0 and 1. If all pixels are grouped into a single patch, . For 

maximum fragmentation,  and

1m 2m

0=F

21 mm = 1=F . To calculate F, aggregation of pixels into 

patches based on pixel neighborships for each class is required. Two pixels are grouped in 

one patch if they are orthogonal neighbors (nearest neighbors) and if they belong to the 

same class (Bogaert et al., 2000a). Orthogonal neighbors are also denoted as adjacent.  

Patch mosaics constitute another level of structural composition of the image. Patches 

are treated as spatially homogeneous entities and relationships between patches can 

consequently be studied (Fortin 1999). The conversion of pixel-format into patch-format 
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data can be performed using standard software. We will calculate F two ways. First, 

equation (8) is calculated for the entire image. Second, we evaluate F for each class and 

then calculate the average over the classes. 

 

2.2.4 Probability of adjacency. We measured the conditional probability of adjacency (pc), 

that is, given a pixel of class of interest, the nearest neighbor is also a pixel of the class of 

interest (Riiters et al., 2000). This measure is considered an alternative assessment of 

fragmentation and is calculated as 

 

1

2

n
n=pc   (9) 

 

with n1 the number of pixel pairs that include at least one pixel of the class of interest and 

n2 the number of pixel pairs of which both pixels belong to the class of interest. The 

measure pc is calculated in a 3×3 template window. Diagonally adjacent pixels are not 

considered as pixel pairs. The measure pc equals zero if none of the pairs includes pixels of 

interest; pc equals one if all pixels in the template are pixels of the class of interest. The 

average probability per class can be determined using the distribution of the template 

values. 

 

2.2.5 Similarity metrics. We use similarity metrics to quantify changes in image as a 

function of resolution. Such metrics combine the information provided by every separate 

pattern component and express the extent to which the coarse resolution image is similar to 
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the original one. The Euclidean distance , between two images i and j, is denoted as jiED ,

 

∑
=

−=
n

m
jmimji xxED

1

2
,,, )(   (10) 

 

where and  are the metrics values,  observed in images i and j, respectively. The 

larger  is, the less similar two images are. The Euclidean distance is the length of the 

distance between two images by accounting for the 7 metrics we calculated. For F, the 

average class data were used to determine similarity. A second similarity index known as 

the Czekanowski coefficient (Motyka et al., 1950; Legendre et al., 1979) expresses the 

percentage of similarity ( ) between two images and is calculated as 

imx ,  jmx ,

jiED ,

jiPS ,
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For two identical images, .  %100, =jiPS
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2.2.6 Accuracy metric. Accuracy assessment is used to quantify product quality. We 

applied accuracy assessment in evaluating coarse landcover maps aggregated by different 

aggregation algorithms and different approaches (consecutive and non-consecutive). For a 

given land cover map, factors such as resolution, aggregation algorithm, and approach can 

affect accuracy. The reference data used in the accuracy assessment is the 1km IGBP land 

cover map. In this paper, aggregation accuracy is defined as the average percent fraction of 

labeled class of all pixels in the original 1km IGBP landcover map, 

 

n

p
ACCU

n

i
i∑

== 1   (14) 

 

For a specified aggregated map, n is the total pixel number, pi is the accuracy of pixel i. For 

example, consider an aggregated 2km coarse-resolution map and a pixel labeled as 

“grassland”. Let 3 out of the 4 subpixels in the 1km map belong to the grassland class and 

one subpixel is labeled “savanna”. The accuracy of the pixel in the 2 km image is then 

given by the proportion of the subpixel numbers that belong to the same class as the pixel 

in the coarse resolution image, i.e., 3/4 = 0.75. It should be noted that different aggregation 

algorithms and approaches could have different classes at the coarse resolution and thus 

have different accuracy values. In this case, aggregation accuracy reflects the agreement 

between coarse resolution class and subpixel land cover in the original IGBP map 

(Latifovica and Olthof, 2004). 
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2.3 Aggregation algorithms 

 

Numerous aggregation methods have been reported in remote sensing literature. The most 

widely used procedures are averaging over all pixels, nearest neighbor resampling, or 

choosing the dominant value (Turner 1989; Bian 1997; Gardner 1998). In the following 

description, we denote pixels of the original image as “subpixels”, and the aggregated 

coarse resolution pixels as the “pixels”. The aggregation window (in the following sections 

is always a 2×2 subpixel window) is denoted as a “block”. Figure 2 shows the algorithms 

considered in this study. Only non-overlapping blocks are considered in this study. For 

random and majority aggregations, both consecutive and non-consecutive approaches are 

used. In the non-consecutive approach, every coarse image is aggregated from the original 

1km image directly. In the consecutive approach, a fixed aggregation window of 2×2 

subpixels is used, which means that an image with resolution z serves as the input for an 

image with resolution 2z. 

 

2.3.1 Majority aggregation. This is the most widely used aggregation procedure. It uses a 

line by line scanning sequence, generally starting at the upper left corner of the image and 

ending at the bottom right corner, and every cluster of subpixels is aggregated 

independently. This technique attributes a pixel to a class based on the dominant subpixel 

class in the block. If several classes are present with the same fraction, a random class 

selection is made. The number of blocks with randomly selected classes will account for 

uncertainty or lack of predictability in the aggregated images (figure 2). This algorithm is 
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not area-conservative, i.e., classes that have large contiguous patches will stay in the 

aggregated image while classes showing scattered small patches may disappear. This 

characteristic should be avoided.  

 

2.3.2 Random aggregation. With random aggregation, the image is aggregated line-by-

line and every aggregation action is independent of the preceding actions. A random 

selection is made among the subpixels in the block. Classes with majority patterns will be 

favored due to an enhanced probability of being selected. Nevertheless, this does not 

exclude the assignment of pixels to a class that was dominated by another one in the block. 

With this approach, and except for homogeneous patterns in which all four subpixels 

belong to the same class, every aggregation step involves a random selection. The initial 

proportions of the classes are likely to be conserved due to this randomization effect 

(Gardner 1998). This will decrease the degree of predictability of the aggregated map 

product which may be considered as a negative characteristic of this technique.  

 

2.3.3 Ranked aggregation. A new aggregation procedure is proposed which is more 

conservative with regard to class area and spatial pattern, that is, the proportional area of 

every class in the aggregated image remains similar to that in the original image. Metrics 

describing the spatial pattern in the original image are conserved maximally. In the 

proposed algorithm, the original image is not scanned line by line, but crisscross 

movements across the image are made. Some blocks are preferentially aggregated. This 

irregular selection of blocks is governed by well-defined rules given below. Aggregation of 

subpixels into pixels are not independent events, i.e., the aggregation result of the i-th block 
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is determined by earlier aggregations, e.g., the ( 1−i )th pixel, in the same image. Blocks 

could be assigned to the minority class instead of the dominant class. These two features 

constitute the main difference of this new algorithm.  

Consider an image I ith mmm×  w m×  s

 w

ubpixels. This image is aggregated using 2×2 non-

overlapping aggregation windows or blocks into nnI × ith n, 2/m= . E

 are der z 2 K

 class j, the s ar

d of 4 subpixels of class j and denoted as {4, 0, 0, 0}. This is a 

(2)  another class denoted 

(3) o other 

(4) taining 2 diagonally placed subpixels of class j and 2 subpixels from two 

(5) ent subpixels of class j and 2 adjacent subpixels from 

(6) ixels of class j next to 2 diagonally placed 

very 4 subpixels in 

mI ×  replaced by one single pixel in nnI × . Consi  classes in mmI ×  of areas zaaa ,,1 . 

Given  ja  subpixels exhibit a particular spatial pattern in mmI × ; if the block e 

superimposed on the original image, 10 different block types can be observed (figure 3):  

(1) Blocks compose

m ,

homogeneous block type with complete dominance of class j.  

Blocks containing 3 subpixels of class j and one subpixel from

as {3, 1, 0, 0}. This is a heterogeneous block type with dominance of class j.  

Blocks containing 2 adjacent subpixels of class j next to 2 subpixels from tw

classes with notation {2, 1, 1, 0}a. This is a heterogeneous block type with dominance 

of class j. 

Blocks con

other classes with block type notation {2, 1, 1, 0}d. This is a heterogeneous block type 

with dominance of class j.  

Blocks containing 2 adjac

another class denoted as {2, 2, 0, 0}a. This is a heterogeneous block type with 

evenness between the 2 classes presented.  

Blocks containing 2 diagonally placed subp
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subpixels from another class which is denoted as {2, 2, 0, 0}d. This is a heterogeneous 

block type with evenness between the 2 classes presented. 

Blocks containing 4 subpixels from 4 different classes whic(7) h is denoted as {1, 1, 1, 1}. 

(8) he 

(9) bpixel next to 3 subpixels from two other classes. If the 

(10) ng 1 subpixel of class j next to 3 subpixels from another class which is 

C sses in the aggregated image, i.e., . In the 

idea

This is a heterogeneous block type with evenness between the 4 classes presented.  

Blocks containing 1 subpixel of class j and 3 subpixels from two other classes. If t

two subpixels belonging to the same class are diagonally placed this block type is 

denoted as {1, 1, 2, 0}d. This is a heterogeneous block type in which class j is 

dominated by another class.  

Blocks containing 1 class j su

two subpixels belonging to the same class are adjacent this block type is denoted as 

{1, 1, 2, 0}a. This is a heterogeneous block type in which class j is dominated by 

another class.  

Blocks containi

denoted as {1, 3, 0, 0}. This is a heterogeneous block type in which class j is 

dominated by another class.  

onsider the areas of the z cla zaaa ′′′ ,,, 21 K

l case, the relationship between ja  and ja′  is then given by  

 

jj aa ′= 4   (15) 

 

et be the number of blocks of a particular type of class j with “ ” the block 

type notation. A remotely sensed image of a landscape exhibits hierarchical patterns. It can 

 j
BlockTypeN  BlockTypeL
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be a  that generally jN }0,0,0,4{  and jN }0,0,1,3{ will compose the majo lass pattern 

features of class j, while, for example, jN }1,1,1,1{ , j
dN }0,2,1,1{  and jN }0,0,3,1{  will form the minority 

class pattern components.  

The starting point in the aggregat c , firs j
}0,0,0,4{  block types are 

aggregated. By doing this, a

ccepted rity c

he

ion pro edures is t, all N

 part of t  ja′  pixels are already specified. Pixel assignment of 

the jN }0,0,0,4{  blocks does not involve any information loss because of the homogeneity of 

the pixels. The total area of pixels generated in this way is denoted as jα ′ , and is related to 

ja′  as 

 

jjja βα ′+′=′   (16) 

 

with jβ ′  clas

ithout loss. It should be noted that generally

s j pixels in the aggregated image that result from heterogeneous blocks 

w jja α′>′ . Only if 0=′jβ , the aggregation 

d redun ation

procedure is complete after this initial step which is executed first for all z classes. It can 

even be concluded that the original map containe dant inform  by presenting the 

data at a resolution finer than required when 0=′jβ . After this step, ∑ iN }0,0,0,4{4 subpixels 

All remaining pixels have to be assigned ery class except for the case of 0

=

k

i 1

are aggregated.  

for ev =′jβ . 

These pixels have to be selected from those blocks containing at least one single pixel of 

class j. The aggregation at each step is based on the ranking of the block types: 
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dada }0,0,2,2{}0,0,2,2{}0,1,1,2{}0,1,1,2{}0,0,1,3{ →→→→  

}0,0,3,1{}0,2,1,1{}0,2,1,1{}1,1,1,1{ →→→→ ad   (17) 

 

with indicating the order of aggregation. Within a class all blocks of type {3,1,0,0} have 

to be first aggregated followed by blocks types {2,1,1,0}a, {2

{1,1,1,1}, {1,1,2,0}d, {1,1,2,0}a, and {1,3,0,0}. This is repeated until 

→  

,1,1,0}d, {2,2,0,0}a, {2,2,0,0}d, 

jβ ′  blocks are 

ma

n 

con

replaced by only one class in the coarse pixel image in the case of aggregating a 

aggregated. If different blocks of a certain pattern type are present in the mmI ×  image, for 

example, in the initial phase of the aggregation, a random selection is made among them.  

The rank in equation (17) is based on the principles of “subpixel jority” and 

“subpixel connectivity”. In the heterogeneous blocks with type {3,1,0,0}, {2,1,1,0}a and 

{2,1,1,0}d, class j is dominant, with the latter two showing less dominance than the first. I

figurations {2,2,0,0}a, {2,2,0,0}d and {1,1,1,1}, none of the classes dominate, but the 

former two configurations have a higher priority because more subpixels of the class of 

interest are present. In {1,1,2,0}a, {1,1,2,0}d and {1,3,0,0}, class j is dominated by other 

classes, but the dominance in configurations {1,1,2,0}a and {1,1,2,0}d is less pronounced 

than in {1,3,0,0}. The principle of connectivity indicates that, in case of equality, {2,2,0,0}a 

prevails over {2,2,0,0}d. When class j is dominant, {2,1,1,0}a types will be aggregated 

before {2,1,1,0}d. The same principle explains why {1,1,2,0}d blocks are chosen, and if this 

type is not available any more for class j, type {1,1,2,0}a will be aggregated.  

This procedure is not executed class by class. Subpixels of more than one class are 
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heterogeneous block. If a class-by-class aggregation were executed, it is possible that when 

the last class had to be aggregated all the blocks containing subpixels of this class were 

already assigned to other classes with which they have these blocks in common. Therefore, 

to determine the sequence of block aggregation, a ratio is defined as 

 

rj

rj
j )(ζ

)(β
γ =   (18) 

 

′

with rj )(β ′  the number of blocks to be assigned to class j, and rj )(ζ  the number of 

remaining blocks containing a subpixel of class j. The subscript “r” indicates remaining, 

and both rj )(β ′ and rj )(ζ  

s with low values of

have to be recalculated after a block is assigned to a particular 

class. Classe  rj )(ζ  

ber

have a higher probability that not enough blocks are 

available relative to the required num rj )(β ′ . Therefore, a class with the highest γ -values 

is aggregated first according to the above mentioned rule of rank (equation

assignment, all 

 (18)). After this 

γ  values are recalculated, and the procedure repeated. A class with the 

lowest rj )(ζ  is chosen in the case of equal of γ -values. This procedure hence 

avoids rjrj )()( ζβ >′

rj )(

. A random selection is made among the classes involved in the case of 

identical ζ  values.  

The novelty and added value of this aggregation technique are in equations (17) and 

(18). Equation (17) describes the rank of the block types, giving preference to those types 

that contain a majority of the class of interest and to pattern connectivity (adjacent patterns 
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prevail on diagonal and vice versa in the case where the class of interest is a minority). 

Equation (18) describes how this rank is optimized for all classes and avoids disappearance 

of classes

ng the algorithm performance. Four variables quantify these changes – the 

hannon and Simpson indices which measure the diversity of proportions, the Lorenz 

Curve Length which characterizes the evenness of these proportions, and the proportional 

 the Lorenz Curve Length compared to that 

 due to their initial scattered pattern. Neither line by line sequence nor a class by 

class sequence is used when the image is aggregated. The selection to which class a block 

is assigned and where this block is located in the image is not fixed unlike the other 

techniques. Instead, it is determined only by the spatial pattern of all classes at each stage. 

The non-consecutive approach was unrealizable for the ranked aggregation technique due 

to exponentially increasing number of block type patterns for block with dimensions 

greater than 2. 

 

3. Results and discussion 

 

We investigate how the relative presence of classes changes with resolution as a first step 

towards assessi

S

errors. Figure 4(a) shows the relative values of

in the original image. Ranked aggregation does not change evenness proportion up to a 

resolution level of 128 km. Changes can be clearly seen at 2 km resolution in the case of 

majority aggregation, which indicates the appearance of class dominance. For example, 

deciduous needleleaf forests, urban and built-up areas (data not shown) are not present 

anymore in the coarse resolution images. Majority aggregation will favor classes with a 
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large extent. Consequently, large classes extend and smaller ones disappear. The 

increasingly negative value of the metric signifies a decreasing length of the Lorenz curve 

with aggregation, reflecting more proportional evenness.  

Non-consecutive random aggregation closely follows the tendency in ranked 

aggregation up to a resolution of 32 km and then shows a positive deviation which indicates 

less evenness at 64 km resolution. The other techniques do not provide better results. The 

diversity of total class area (figures. 4(b) and 4(c)) is clearly altered by aggregation in the 

case of random and majority algorithms. This is especially true of the majority algorithm; 

the 

eflect the image information content and the sum of the 

pro

deviation is large for both consecutive and non-consecutive approaches and appears 

already after the first aggregation (2 km level). Ranked aggregation conserves the diversity 

of the class areas almost perfectly for both diversity metrics, especially at coarse 

resolutions (32 to 128 km).  

The proportional error expresses the extent to which the proportion of each class in the 

image changes with resolution (figure 4(d)). Both majority aggregation algorithms have 

bigger proportional errors than other aggregation techniques and the increasingly negative 

trend of the curve indicates smaller proportions with aggregation. However, since an 

average value is used to r

portions at every scale level has to equal unity, this trend indicates that certain classes 

will have a smaller proportion due to aggregation (12 out of 19 classes), while the others 

show an increase (3 classes) or an irregular trend (4 classes). Ranked aggregation is the 

most effective in conserving the relative proportion of every class. Random aggregation 

techniques generate patterns similar to the original image at fine to moderate resolutions (2 

to 16 km). 

 22



Contagion expresses the extent to which pixels of different classes are adjacent. It 

quantifies interspersion of classes and combines two features – fragmentation of classes 

and their spatial mixing. Contagion is calculated for the entire image and therefore reflects 

a characteristic of the overall spatial pattern. Contagion is based on the determination of the 

probability that a certain class is neighboring another one and accounts for the size 

differences between classes. Nevertheless, small classes remain more sensitive to the 

disappearance of one single pixel than large ones, which will likely alter the observed 

probability considerably at coarse resolutions. Ranked aggregation conserves the degree of 

contagion almost perfectly, with a deviation not exceeding 1% at fine to moderate 

resolutions (figure 5). At coarser resolutions, majority aggregation, both in the consecutive 

and non-consecutive mode, performs better although the contagion for all techniques shows 

a clear trend deviating from the horizontal reference line of no change. Random 

aggregation clearly does not conserve contagion and the choice between a consecutive or a 

non-consecutive way of generating the image series has no impact. All three techniques 

show a decreasing trend for contagion indicating a tendency towards smaller patches which 

is due to the smaller number of pixels available to represent pattern information. It should 

be noted that contagion is based only on pixel counts regardless of the area represented by 

them. The difference between random aggregation and majority/ranked aggregation is 

likely due to the fact that the former does not account for spatial relationships between 

pixels while the latter techniques favor conservation of pixels that are spatially grouped. 

Figure 6 shows evolution of the Monmonier fragmentation index F for the 19 classes 

pooled. Fragmentation is measured by expressing the number of patches observed relative 

to the number of pixels. F tends to zero in the absence of fragmentation while F values 
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equal to unity indicate patches composed of a single pixel only. A general tendency of 

increasing fragmentation is observed with aggregation. A nearly linear increase of the 

frag

egation is the most conservative towards pattern as 

qua

mentation metric is seen for random aggregation, which results from the presence of 

more singular pixels at coarse resolutions. Figure 6(a) suggests a steady change in the 

spatial pattern of all classes pooled. No clear influence of the choice of input data (non-

consecutive versus consecutive aggregation) is observed. The difference between the 

original and aggregated images increases with every aggregation step reflecting an increase 

in patches of single pixel. This tendency is not observed for ranked aggregation and 

majority aggregation. Both ranked and majority aggregations show less deviation from the 

original image and the change is not continuously increasing at every aggregation level. 

Ranked aggregation must be preferred over majority aggregation for this specific image as 

the relative differences are smaller. The upward trend in both curves reflects the 

representation of larger number of single pixel patterns. It should be noted that the 

Monmonier fragmentation metric does not account for pixel area and is only based on pixel 

counts, like the contagion metric.  

Figure 6(b) uses class-based data to evaluate pattern change due to aggregation. While 

for random aggregation the aggregated pattern becomes rapidly more fragmented relative to 

the starting image, majority and ranked aggregation show less deviation from the original 

pattern at coarser resolution, especially when standard errors are taken into account. Except 

at 64 and 128 km, ranked aggr

ntified here by its degree of fragmentation. It should be noted that data series based on 

different aggregation rules are not fully comparable, especially at coarse resolutions, due to 

class disappearance with majority aggregation. This general trend where majority and 
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ranked aggregation perform better than random aggregation with regard to fragmentation is 

partially confirmed by separate analysis of every class (details not presented for brevity).  

The probability of adjacency expresses the probability that if a pixel belongs to a 

certain class, its neighbor also represents that class. This probability is a measure of spatial 

dispersion of pixels of a class (class fragmentation) and quantifies the spatial mixing and 

connectivity of the classes. An overall view on pattern change with changing resolution is 

obtained by expressing this pattern characteristic using the average of the probabilities 

obs

he value obtained by consecutive random aggregation is closest 

to t

erved for every class.  

Figure 7 shows the evolution of the average probability of adjacency for the three 

aggregation techniques. Random aggregation (both consecutive and non-consecutive) 

influences class dispersion (lower probabilities in coarse resolution images) and large 

deviations (~50% for non-consecutive random aggregation) are observed at coarse 

resolution. Nevertheless, t

he original for the first aggregation step (2 km), while the other techniques immediately 

report a deviation of greater than 8% relative to the probability of adjacency in the original 

image. The average probability of adjacency decreases more rapidly with decreasing 

resolution for random aggregation compared to the other techniques. This decreasing trend 

is a direct consequence of the fact that subpixel groups present at fine resolution are 

replaced by more isolated pixels at coarser resolutions. Consecutive majority aggregation 

conserves the probability more thoroughly at fine to moderate resolutions (2-32 km). 

Ranked aggregation is more reliable at coarse resolutions. Note that non-consecutive 

majority aggregation never performs better than the ranked technique. It should be noted 

that both consecutive majority and ranked aggregation have nearly coinciding curves for 
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the range 2 to 32 km, which is also observed for 12 out of 19 classes (data not shown).  

We calculated (dis)similarity metrics to assess change in image information relative to 

the original image. These metrics summarize the results described in detail above. Figure 

8(a) shows evolution of the Euclidean distance with decreasing resolution. All techniques 

show a partially upward trend indicating persistent information change with aggregation. 

This can hardly be avoided as less information units are available in the coarse resolution 

ima

served at 128 km does not pass the ~95% level, 

whi

ges to represent the pattern complexity present in the original image. This was already 

observed from the preceding metrics individually. Their separate effects are superimposed 

in these similarity metrics. Ranked aggregation has clearly the smallest Euclidean distances 

(~0.05) at every resolution up to a resolution of 64 km. For consecutive majority 

aggregation, the Euclidean distance exceeds the distance measured by ranked aggregation, 

and for the non-consecutive majority rule, the difference is even higher. Consecutive 

random aggregation takes an intermediate position between both techniques and changes 

almost linearly with decreasing resolution.  

The Czekanowski coefficient expresses the degree of similarity between the original 

and the aggregated images (figure 8(b)). The decreasing trends therefore indicate an 

increasing degree of pattern difference between the images. Majority aggregation is clearly 

less pattern conservative than ranked aggregation. The latter does not show a distinct 

pattern change up to 64 km, and the drop ob

ch is remarkable after that many aggregation steps. Consecutive random aggregation 

takes an intermediate position between consecutive majority and ranked aggregation also 

for the Czekanowski coefficient, except at 32 km, where it performs worse than 

consecutive majority aggregation. The use of non-consecutive approach does not enhance 
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the similarity between the high and low resolution images. 

The results presented in figures. 4 to 8 express pattern changes with decreasing 

resolution which are indicative of algorithm performance. A complementary approach 

analyzes the decision processes of the various algorithms. When the predictability of the 

aggregation result is high and when the number of subpixels selected belonging to a 

minority class in the block is low, the aggregation result is more reliable, predictable, and 

clos

etween the number of blocks randomly selected to the 

tota

er to the information present in the original image. This tendency should be favored in 

developing aggregation algorithms. 

Figure 9 shows the degree of unpredictability of the three aggregation algorithms. 

Unpredictability occurs when a class has to be selected randomly in the case of equal γ-

values (equation (18)) for the ranked aggregation. Equal γ-values have only been observed 

for block type {3,1,0,0} during the aggregation. The associated unpredictability at every 

resolution is calculated as the ratio b

l number of blocks used to create the aggregated image (figure 9(a)). Low 

unpredictability levels (≤0.5%) are observed except at 64km. Nevertheless, the 

unpredictability (~ 1.5%) observed at this particular resolution is still relatively low. A 

higher degree of unpredictability is observed for the majority aggregation rule (figure 9(b)) 

and in particular for the consecutive mode, where the unpredictability ranges from 3.5% to 

6 %. Unpredictability is introduced when the block types {2,2,0,0}a, {2,2,0,0}d, and 

{1,1,1,1} are present for this aggregation technique. Unpredictability is calculated as the 

ratio of the number these three block types to the total number of blocks. Note that 

unpredictability decreases sharply after the 4km resolution level for the non-consecutive 

approach. This is perhaps because class evenness in large aggregation blocks is improbable. 
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Non-consecutive random aggregation (figure 9(c)) generates the largest degree of 

unpredictability, which increases with decreasing resolution from ~15% to ~45%. Note that 

the consecutive approach generates less predicable results than its non-consecutive 

counterpart. Unpredictability is present in this aggregation algorithm every time when a 

heterogeneous block is encountered.  

The number of subpixel minority classes to which a pixel is assigned is another 

indicator of algorithm performance. It is evident that this never occurs for majority 

aggregation. For ranked aggregation, the percentage of assigned minority classes, observed 

for block types {1,1,2,0}a, {1,1,2,0}d, and {1,3,0,0}, increases with resolution, but never 

passes the 0.2% level (figure 10), which means that it remains a marginal event.  

The

gregation 

 results of the accuracy assessment are presented in figure 11. All techniques show a 

decreasing trend indicating more subpixel heterogeneity. Majority aggregation performs 

slightly better than ranked aggregation but the tendencies are similar and the absolute 

differences between the curves are negligible. This is likely because both techniques favor 

pixel majority and adjacency. The marginally lower accuracy of the ranked ag

technique is because it enables minority class assignment and conserves proportional class 

area at the same time. Random aggregation generates less accurate results as may be 

expected by its randomizing effect. 
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4. Conclusions 

ulti-scalar land cover data are needed to model and quantify ecosystem processes at 

different spatial scales. This motivates the development of reliable aggregation algorithms 

which enable resolution coarsening with minimal information loss. We propose a new 

aggregation technique which maintains class evenness, diversity, proportion and patch 

diversity of the original image. The method uses spatial patterns in the fine resolution 

image as the starting point. Non-overlapping square-shaped aggregation windows or blocks 

containing four subpixels are parameterized in terms of adjacency, majority, and ambiguity 

which determine the type of the block. The blocks are then ranked with respect to their 

content. The frequency of the types per class determines the class to which a block is 

assigned to and the order in which blocks are processed. Well-defined rules to assign a 

class to the block minimize changes in the class proportions and overall characteristics of 

the original spatial patterns in the aggregated image. This is achieved by (i) aggregating 

homogeneous blocks which contains one single class, (ii) avoiding class disappearance 

through a step-by-step monitoring of subpixel loss per class (equation (18)), and (iii) giving 

aggregation preference to blocks showing majority and adjacency of subpixels. We used 

class proportion-based metrics in addition to image contagion and the Monmonier 

fragmentation metrics to characterize spatial patterns. We show that ranked aggregation 

technique better conserves the complex patterns in the original image. Some information 

changes are likely unavoidable as fewer pixels are available to represent information at 

coarser resolutions. Also, images generated with ranked aggregation are found to be more 

 

M
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similar to the original image than those created by random or majority aggregation. Our 

conclusions are confirmed by analyses of several predictability and accuracy parameters. 
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Class  Coverage (%) 
Water   68.073 
Evergreen broadleaf forest  2.201 
Evergreen needleleaf forest  4.026 
Deciduous needleleaf forest  0.045 
Deciduous broadleaf forest  1.086 
Mixed forests  2.723 
Closed shrublands  0.249 
Open shrublands  7.546 
Woody Savannas  1.772 
Savannas  0.758 
Grasslands  2.697 
Permanent wetlands  0.172 
Croplands  2.895 
Urban and built-up  0.112 
Cropland/Natural vegetation mosaic  1.201 
Snow and ice  2.81 
Barren or sparsely vegetated  1.437 
Unclassified  0.197 
Fill value  0.001 

 

 

Table 1  

Coverage of the 17 International Geosphere-Biosphere Programme (IGBP) classes in the 

North American data set shown in Figure 1.  
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Spatial resolution (km)  Rows Columns
1 (IGBP original image) 8960 9216 
2 4480 4608 
4 2240 2304 
8 1120 1152 
16 560 576 
32 280 288 
64 140 144 
128 70 72 

 

 

 

Table 2 

Images used to evaluate the aggregation procedures. The original image is the MODIS land 

cover map, i.e. the 8960×9260 pixel image with a spatial resolution of 1 km. This image 

serves as the input to the 2 km image, which is generated using a 2×2 window.  
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Figure captions 

 

Figure 1. MODIS land cover image for North America, composed of 8996 rows and 9223 

columns, at 1 km resolution in Lambert Azimutal equal area projection. The central 

meridian is located at 100 W and the central parallel at 50 N. 

 

Figure 2. Illustration of the algorithms used in this paper. In (a) the original image (4×4) is 

given, composed of 16 subpixels and 4 classes. This image will be aggregated into an image 

with 2×2 pixels. In (b) the image resulting from majority aggregation is shown. The pixels 

correspond to classes represented by a majority of subpixels in the aggregation windows. In 

case of equity (e.g. presence of two biomes with two subpixels or presence of four biomes), 

a random selection is made. In this example, this random selection for the bottom right 

aggregation window can result in four different results. The image is aggregated line by line, 

starting in the upper left position of the image. In (c), the image created by random 

aggregation is given. The classes of the pixels are determined by a random selection among 

the subpixels in each aggregation window. Note that due to this random selection, 24 

different results can be generated. Also random aggregation uses a line-by-line aggregation 

sequence. In (d), the result using the ranked aggregation algorithm is shown. The sequence 

of the aggregation is given in (e), hence no line-by-line aggregation is observed. Only one 

random selection (between the two classes represented by a hatched fill pattern) was needed 

during the application of the latter technique, to determine the last pixel class, which implies 

a higher predictability as compared to the other techniques. The reader will notice that the 
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aggregation results shown in (d) is the closest to the original set shown in (a) from visual 

perception, and that is the only case has one of the classes represented by striped pattern. 

 

Figure 3. Illustration of the 10 block types and the notation for the ranked aggregation 

algorithm. The class represented by the black pixel is the class of interest. Pattern (a) is 

denoted as homogeneous, while the others are heterogeneous. In patterns (a) - (d), the 

selected subpixel has a majority in the aggregation window, while in patterns (h) - (j) the 

selected subpixel belongs to the minority in the block. In patterns (e) - (g), none of the 

classes is dominant. The “a”, and “d” labels indicate that subpixels of the class of interest 

are adjacent and diagonally placed respectively. The numbers represent the subpixel number 

for each class.  

 

Figure 4. Influence of spatial aggregation technique on class proportions. (a) Evenness 

assessment by means of the Lorenz curve length. (b) Proportion diversity assessment using 

the Shannon diversity index. (c) Proportion diversity assessment using the Simpson 

diversity index. (d) Assessment of the average deviation of every class proportion relative to 

the proportion in the original image by means of proportional error.  

 

Figure 5. Influence of spatial aggregation on image contagion. 

 

Figure 6. Influence of spatial aggregation on class fragmentation by means of the 

Monmonier Fragmentation metric. (a) Fragmentation assessment of all classes pooled. (b) 
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Assessment of the average class fragmentation relative to the degree of average 

fragmentation in the original image. 

 

Figure 7. Influence of spatial aggregation on the mean probability of adjacency. 

 

Figure 8. Analysis of pattern change due to spatial aggregation using similarity metrics. (a) 

Image pattern difference assessment using the Euclidean distance. (b) Image pattern 

difference assessment using the Czekanowski coefficient. 

 

Figure 9. Assessment of unpredictability to illustrate algorithm performance. (a) Ranked 

aggregation - unpredictability is caused by the presence of random selections between 

classes due to equal γ-values. (b) Majority aggregation - unpredictability is caused by the 

presence of {2,2,0,0}a, {2,2,0,0}d, or {1,1,1,1} block types. (c) Random aggregation - 

unpredictability is present in case of the heterogeneous block types. 

 

Figure 10. Block assignment to a minority class as a parameter of algorithm performance. 

Minority assignment is observed for block types {1,1,2,0}a, {1,1,2,0}d, and {1,3,0,0}.  

 

Figure 11. Accuracy of images aggregated using various aggregation algorithms. 
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Figure 1. MODIS land cover image for North America, composed of 8996 rows and 9223 

columns, at 1 km resolution in Lambert Azimutal equal area projection. The central 

meridian is located at 100 W and the central parallel at 50 N. 
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Figure 2. Illustration of the algorithms used in this paper. In (a) the original image (4×4) is 

given, composed of 16 subpixels and 4 classes. This image will be aggregated into an image 

with 2×2 pixels. In (b) the image resulting from majority aggregation is shown. The pixels 

correspond to classes represented by a majority of subpixels in the aggregation windows. In 

case of equity (e.g. presence of two biomes with two subpixels or presence of four biomes), 

a random selection is made. In this example, this random selection for the bottom right 

aggregation window can result in four different results. The image is aggregated line by line, 

starting in the upper left position of the image. In (c), the image created by random 

aggregation is given. The classes of the pixels are determined by a random selection among 

the subpixels in each aggregation window. Note that due to this random selection, 24 

different results can be generated. Also random aggregation uses a line-by-line aggregation 

sequence. In (d), the result using the ranked aggregation algorithm is shown. The sequence 

of the aggregation is given in (e), hence no line-by-line aggregation is observed. Only one 

random selection (between the two classes represented by a hatched fill pattern) was needed 

during the application of the latter technique, to determine the last pixel class, which implies 

a higher predictability as compared to the other techniques. The reader will notice that the 

aggregation results shown in (d) is the closest to the original set shown in (a) from visual 

perception, and that is the only case has one of the classes represented by striped pattern. 
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Figure 3. Illustration of the 10 block types and the notation for the ranked aggregation 

algorithm. The class represented by the black pixel is the class of interest. Pattern (a) is 

denoted as homogeneous, while the others are heterogeneous. In patterns (a) - (d), the 

selected subpixel has a majority in the aggregation window, while in patterns (h) - (j) the 

selected subpixel belongs to the minority in the block. In patterns (e) - (g), none of the 

classes is dominant. The “a”, and “d” labels indicate that subpixels of the class of interest 

are adjacent and diagonally placed respectively. The numbers represent the subpixel number 

for each class.  
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(c)

 

2 4 8 16 32 64 128
-0.5

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

 consecutive Ranked
 consecutive Majority
 consecutive Random
 nonconsecutive Majority
 nonconsecutive Random

M
ea

n 
Pr

op
or

tio
na

l E
rr

or
 o

f A
ll 

C
la

ss
es

Resolution (km)

(d) 

 

 

Figure 4. Influence of spatial aggregation technique on class proportions. (a) Evenness 

assessment by means of the Lorenz curve length. (b) Proportion diversity assessment using 

the Shannon diversity index. (c) Proportion diversity assessment using the Simpson 

diversity index. (d) Assessment of the average deviation of every class proportion relative to 

the proportion in the original image by means of proportional error.  
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Figure 5. Influence of spatial aggregation on image contagion. 
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Figure 6. Influence of spatial aggregation on class fragmentation by means of the 

Monmonier Fragmentation metric. (a) Fragmentation assessment of all classes pooled. (b) 

Assessment of the average class fragmentation relative to the degree of average 

fragmentation in the original image. 
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Figure 7. Influence of spatial aggregation on the mean probability of adjacency. 
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Figure 8. Analysis of pattern change due to spatial aggregation using similarity metrics. (a) 

Image pattern difference assessment using the Euclidean distance. (b) Image pattern 

difference assessment using the Czekanowski coefficient. 
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Figure 9. Assessment of unpredictability to illustrate algorithm performance. (a) Ranked 

aggregation - unpredictability is caused by the presence of random selections between 

classes due to equal γ-values. (b) Majority aggregation - unpredictability is caused by the 

presence of {2,2,0,0}a, {2,2,0,0}d, or {1,1,1,1} block types. (c) Random aggregation - 

unpredictability is present in case of the heterogeneous block types. 
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Figure 10. Block assignment to a minority class as a parameter of algorithm performance. 

Minority assignment is observed for block types {1,1,2,0}a, {1,1,2,0}d, and {1,3,0,0}.  
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Figure 11. Accuracy of images aggregated using various aggregation algorithms. 
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