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Abstract. Forecasts of the states and fluxes of terrestrial ecosystems are an increasingly important tool for a large fire,
famine, irrigation, energy, recreation, and agriculture community. A detailed understanding of the relative importance of
vegetation phenology and meteorology, two of the main forcings of ecosystem forecasts, and the likely impact of errors in
phenological and (or) meteorological forecasts are required prior to management implementation. Using the terrestrial
observation and prediction system (TOPS) and 1982–1997 leaf area index (LAI) and meteorology for the conterminous
United States, we tested the relative importance of interannual variability in meteorology and LAI for soil water simulations.
In nearly all cases, meteorological variability influenced simulations far more than did LAI; the effects of ignoring realistic
variability in either variable were most pronounced in arid, low-LAI regions. We then identified the critical meteorological
forecast errors in temperature and precipitation that were required to generate statistically significant differences in 1-week
soil water forecasts. Temperature critical errors approached 10 °C in winter but were only about 2–3 °C in summer.
Precipitation critical errors were much more constant throughout the year and were usually less than 1 cm (error in weekly
total precipitation).

Résumé. Les estimations des états et des flux des écosystèmes terrestres constituent de plus en plus des outils importants
pour l’importante communauté des spécialistes du feu, de la famine, de l’irrigation, de l’énergie, de la récréation et de
l’agriculture. Il est essentiel d’avoir une connaissance détaillée de l’importance relative de la phénologie de la végétation et
de la climatologie, deux des principaux éléments de forçage dans les estimations d’écosystèmes, et de l’impact probable des
erreurs dans les estimations phénologiques et (ou) climatologiques avant de pouvoir mettre en place des politiques de
gestion. À l’aide du système TOPS (« terrestrial observation and prediction system ») et des données LAI de 1982–1997 et
des données climatiques des États-Unis continentaux, on a testé l’importance relative de la variabilité interannuelle de la
climatologie et de LAI dans les simulations d’eau dans le sol. Dans presque tous les cas, la variabilité climatique avait une
influence beaucoup plus grande sur les simulations que le LAI; le fait d’ignorer une variabilité réaliste dans l’une ou l’autre
de ces variables avait une plus grande influence dans les régions arides présentant un indice LAI faible. Nous avons alors
identifié les erreurs critiques dans les estimations climatiques au niveau de la température et des précipitations, nécessaires
pour générer des différences statistiquement significatives dans les estimations d’eau dans le sol à l’échelle hebdomadaire.
Les erreurs critiques au niveau de la température s’approchaient de 10 °C en hiver mais n’atteignaient qu’environ 2–3 °C en
été. Les erreurs critiques dans le cas des précipitations étaient beaucoup plus constantes à travers l’année et étaient
généralement de moins de 1 cm (erreur dans la précipitation hebdomadaire totale).
[Traduit par la Rédaction]

730Introduction

Ecosystem fluxes of water and carbon are crucial
determinants of the current and future state of the earth system.
Weather, climate, stream flow, plant canopy water status, soil
water resources, and carbon storage are all affected by short- to
long-term variation in ecosystem fluxes. In addition to
influences from human land cover modification (DeFries et al.,
2002), edaphic conditions (Imhoff et al., 1997), and disturbance
history (Thornton et al., 2002), ecosystem fluxes of matter and
energy can be influenced by variation in climate and vegetation
phenology.

For example, Buermann et al. (2001) showed that
incorporation of realistic, not prescribed, leaf area index (LAI)
helped to eliminate a known cold bias in the US National

Center for Atmospheric Research (NCAR) Community
Climate Model version 3 (CCM3). Bonan et al. (2002) showed
that incorporation of spatially variable LAI strongly affected
sensible versus latent heat partitioning in climate modeling.
Variations in large-area LAI (Myneni et al., 1997a; Zhou et al.,
2001), primarily controlled by temperature changes (Zhou et
al., 2003), thus have the potential to strongly alter terrestrial
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ecosystem processes. Other authors have shown the effect of
precipitation (Nemani et al., 2002) and temperature (Braswell
et al., 1997) on terrestrial ecosystems.

Numerous authors have investigated aspects of the
relationships among climate, LAI, and ecosystem function,
e.g., Lucht et al. (2002). To date, many researchers have focused
on long-term processes and trends. Although information is
becoming available on shorter term controls of ecosystem
processes, especially carbon (Baldocchi et al., 2001), the
emerging field of short- to long-term ecological and (or)
ecosystem forecasting is less understood.

Ecological forecasts, in which the state of an ecosystem is
predicted at some time in the future, are of major interest to a
wide political and management field. Some ecological forecast
applications, such as fire, are especially relevant (Westerling et
al., 2002), but fields as diverse as famine relief, agricultural
irrigation, power generation, wildlife management, and futures
trading could all benefit from ecological forecasts, especially
with regard to water resources. In the field of fire control, short-
term forecasts could be used to optimize the scheduling of
finite resources and (or) request additional support. Various
approaches have been used to forecast some portion of the
hydrologic cycle, e.g., El Niño – Southern Oscillation (ENSO)
teleconnections and streamflow (Chiew et al., 2003), numerical
modeling for flood management (Paudyal, 2002), and
probabilistic drought forecasts (Anderson et al., 2000).
Hydrological forecasts within a larger ecological context,
though, are less common.

The terrestrial observation and prediction system (TOPS,
http://www.ntsg.umt.edu/tops/) described in Nemani et al.
(2003c) and used in Nemani et al. (2003a) can be used to
generate such forecasts, including simulation of net primary
production (NPP), water fluxes, and soil water content. Prior to
implementation in any management application, an understanding
of the factors controlling ecological forecasts and the likely
impact of errors in forecasts of critical driving variables is
required. Our first goal in this research was therefore to assess
the relative importance of the time-dependent TOPS input
variables, LAI and meteorology, for simulations of soil water
content, a critical state variable for many applications. Based
on these results, our second goal was to establish the forecast
errors in the more important TOPS input variable that would
lead to statistically significant differences in forecasted soil
water content. Given that TOPS incorporates soil water
processes, canopy fluxes, radiation interception, and remote
sensing concepts that are in wide use by many modeling
groups, we expect our results to be generally applicable to an
extensive scientific and management community

Methods
Model

We used TOPS to simulate 1982–1997 (1994 not simulated
owing to satellite failure) daily soil water (kg·m–2). TOPS
integrates remote sensing, ecosystem modeling, and static

edaphic and land cover information to simulate ecosystem
states and processes. TOPS is derived from the Biome-BGC
model (Thornton et al., 2002; White et al., 2000), which in turn
is based on the Forest-BGC model (Running and Coughlan,
1988; Running and Gower, 1991). The full Biome-BGC model
simulates states and fluxes of ecosystem carbon, nitrogen, and
water with prognostic phenology (White et al., 1997), mass and
energy balance, and considerations of atmospheric and structural
disturbances; TOPS implements the Biome-BGC water flux
model, based on a Penman–Monteith approach relying on LAI
and meteorology. Daily water fluxes are evapotranspiration
(ET), calculated as the sum of transpiration, soil evaporation,
canopy evaporation, and sublimation; and runoff, calculated as
soil water in excess of soil water holding capacity (calculated
from equations in Clapp and Hornberger (1978)). Soil water
content, which in turn affects leaf water potential and stomatal
conductance, is the balance between inputs (snowmelt and
precipitation) and outputs (ET and runoff, calculated using a
bucket model). Biome-BGC carbon and nitrogen processes are
not used. Instead, consistent with application of TOPS for real-
time and forecast modes, carbon fluxes are calculated based on
a light-use efficiency model:

productivity = ε × APAR × f(environment)

where ε is the dry matter conversion efficiency (constant of
1.2 g·MJ–1 for all biomes, consistent with Green et al. (2003));
f(environment) is a multiplier set as the minimum of limitations
from leaf water potential, night minimum temperatures, and
vapor-pressure deficit (each is a zero to one scalar, also used for
water fluxes); and APAR is absorbed photosynthetically active
radiation, calculated as photosynthetically active radiation
(PAR) multiplied by the fraction of photosynthetically active
radiation (FPAR) absorbed by plant canopies (Myneni et al.,
1997b). Nemani et al. (2003a) used TOPS to simulate historical
NPP, but here we adopt the premise that soil water, which
controls leaf water potential and runoff, is of broadest interest
for the management community.

Datasets and processing

As described later in the paper, TOPS simulations require
two basic input types: static (soils, land cover) and dynamic
(LAI, meteorology). Simulation spatiotemporal resolution was
constrained by satellite and meteorological data availability.
Both are available for the conterminous US at a resolution of
1 km: satellite data from the Earth Resources Observation
System Data Center from 1989 to present and meteorology data
from the Daymet project from 1982 to 1997. Satellite data are
available from the Pathfinder project from 1982 to present at a
resolution of 8 km. As 1 km resolution data overlapped for only
the 1989–1997 period, we opted for the longer record of the
Pathfinder data and conducted all simulations at a resolution of
8 km for 1982–1997 (Daymet data through 1997 only, 1994
excepted owing to satellite failure). All data were, if necessary,
extracted from their full extent, resampled to the 8 km
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resolution, and projected to the Lambert azimuthal equal-area
projection.

Static information

Using a 1 km gridded soils dataset from the Pennsylvania
State University (based on State Soil Geographic Database,
STATSGO, and created by Miller and White (1998)), we
generated soil depth and percent sand, silt, and clay, as required
by TOPS. For each 1 km pixel, the input data consisted of 11
soil layers, each for a prescribed depth in centimetres (5, 10, 20,
30, 40, 60, 80, 100, 150, 200, and 250), rock fraction, percent
sand, silt, and clay, and texture (i.e., silty loam). Depth to
bedrock was also included. Thus depth could be obtained from
either depth to bedrock or by examining the 11 layers. In many
cases the two depths did not agree, even to a coarse
approximation. Further, many cases existed in which soil
texture was present but sand, silt, and clay data were missing.
Other pixels existed with depth information but no other data.
Unfortunately, no clear-cut approach for generating single-
layer percent sand, silt, and clay and depth existed. We used the
following process. First, for each pixel, we extracted only those
layers having a depth less than or equal to the recorded depth to
bedrock. Second, for these layers we then extracted, where
available, the sand, silt, clay, and texture information. Third, we
calculated the layer-weighted percent sand, silt, and clay
information. Fourth, we calculated the rock fraction corrected
layer-weighted soil depth. The 1 km data, although a great
improvement over previous datasets, is problematic. Inconsistent
or incomplete data are common and uncertainties are largely
unknown. Alternatives were extremely limited and we used the
dataset with the recognition that it may cause unrealistic
simulations in at least some regions (i.e., the Mississippi delta
region had a high rock fraction).

Although Lathrop et al. (1995) found that STATSGO data
can cause errors in prediction of soil water holding capacity and
subsequent simulation of ecosystem processes, Juracek and
Wolock (2002) showed that errors are reduced with increasing
pixel size, in their case 25 km2. Thus, as our pixels are 64 km2

and our results are presented primarily at an aggregate biome
level, potential soil-related biases that could hamper fine-
resolution studies are not relevant here.

TOPS, in general, is designed for coarsely defined plant
functional types as parameterized in White et al. (2000). Here,
as our primary goals were to test relative ecosystem forcing by
meteorology versus LAI and the system response to input
variable forecast errors, we implemented a further biome
simplification to four biomes (described in Figure 1):
deciduous broadleaf forest (DBF), evergreen needle-leaf forest
(ENF), grass, and shrub. We identified simulation cells as those
containing both valid soils and land cover information (barren
and water classes also excluded).

LAI

We used 1982–1997 10-day composited global 8 km
Pathfinder advanced very high resolution radiometer (AVHRR)

normalized difference vegetation index (NDVI) recomposited
to monthly resolution to calculate LAI (and FPAR, not
presented) using methods in Myneni et al. (1997b). Although
they do not explicitly detect the initiation or completion of
plant growth or other ecosystem processes, these data depict
the interannual variation and any trends in vegetation
phenology. We implemented the following six-step scheme to
generate daily LAI values for each pixel. First, we assumed that
monthly composited data did not require cloud screening, as is
required with shorter term compositing (White et al., 2002).
Although unlikely to be true (see later in the paper), this
assumption, given the difficulties in accurately cloud-screening
historical AVHRR data, was acceptable. Second, we assumed
that each composit period represented the midpoint of each
month. Third, we calculated the 15-year average for each
month (1994 and any missing values not included). Fourth, for
each year we identified missing values or LAI calculated as
zero and filled these periods with the climatological LAI values
from step three. Throughout the spring, summer, and fall
months, LAI filling was required in less than 1% of pixels; the
maximum filling was 13% for grass biome in January
(Table 1). Fifth, as extensive analysis revealed considerable
residual temporal irregularities, most likely related to partial
cloud or snow cover, we applied a three-period smoothing
function. Lastly, we used a spline function to generate daily
LAI values. These steps yielded, for each pixel, a 15-year time
series of daily LAI.

Meteorology

We used 1 km meteorological surfaces generated from the
Daymet algorithm (Thornton et al., 1997) using daily weather
station observations of maximum–minimum temperatures and
precipitation. Daily weather surfaces, generated with recent
interpolation improvements (Thornton and Running, 1999;
Thornton et al., 2000), include maximum–minimum temperature,
short-wave radiation (from which PAR may be calculated),
vapor-pressure deficit, and precipitation. Details and data are
available on the Daymet Web site (www.daymet.org).

Simulations and analysis: relative forcing

Using these data and the TOPS architecture, we first
conducted a 1982–1997 spin-up simulation to initialize system
state variables and then conducted the following three
simulations:

(1) Control simulation — Both LAI and meteorology were
allowed to vary realistically.

(2) Climatological meteorology/variable LAI (CMVL)
simulation — For CMVL, we set LAI as for the control
simulation. We set maximum–minimum temperatures,
radiation, and vapor-pressure deficit as daily 1982–1997
averages, i.e., for each pixel, each day in the
climatological meteorology record was a 15-year average.
For precipitation, simple averaging was inappropriate, as
this would have caused a constant drizzle. Instead, for
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each month and each pixel, we calculated average total
precipitation and average number of days with rain.
Precipitation was then randomly distributed within the
month based on these data. CMVL simulations thus show
the impact of ignoring realistic interannual climatic
variability.

(3) Climatological LAI and variable meteorology (CLVM)
simulation — Here, for each pixel, we set daily LAI as
the corresponding 1982–1997 daily average LAI and
daily weather as for the control simulation. CLVM
simulations thus show the impact of replacing realistic
interannual LAI – phenological variability with long-term
average canopy seasonality. Note that this scenario does

not employ the same LAI value for every day in the year:
the long-term average seasonality is present.

We then conducted a three-step analysis, each of which, by
examining the divergence of CMVL–CLVM from the control
simulation, indicates the relative importance of meteorology
versus LAI in forcing simulated soil water.

We first assessed the differences in soil water content by
season: January, February, March (JFM); April, May, June
(AMJ); July, August, September (JAS); and October,
November, December (OND). For each season in each year we
extracted the simulated daily soil water and conducted a t test
between the approximately 90 days in the experimental
(CMVL or CLVM) and control simulations. We recorded the
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Figure 1. Distribution of biomes used in the TOPS simulations. Land cover data were derived
from a combination of the University of Maryland (UMD) classification of Hansen et al. (2000)
and the continuous fields classification of DeFries et al. (1999). Deciduous broadleaf forest
(DBF) includes mixed forest if evergreen cover less than 50%; woodland if evergreen cover less
than 50% and broadleaf cover greater than 50%; wooded grassland if tree cover greater than
50%, evergreen cover less than 50%, and broadleaf cover greater than 50%; and urban.
Evergreen needle leaf forest (ENF) includes mixed forest if evergreen cover greater than 50% or
broadleaf less than 50%; woodland if evergreen cover greater than 50% or broadleaf cover less
than 50%; and wooded grassland if tree cover greater than 50% and evergreen cover greater than
50% or broadleaf cover less than 50%. Grass includes grassland; wooded grassland if tree cover
less than 50%; and cropland. Shrub includes closed and open shrub.



number of years (out of a potential 15) with a probability value
P less than 0.05. For each biome, we also calculated the
percentage of annual simulations with significant differences in
each season.

Second, we investigated the relationship among annual
meteorology, LAI, and the number of significant differences
between CMVL–CLVM and control simulations. For
meteorology, we used annual average water deficit, equal to the
control precipitation minus control potential ET (calculated using
a Priestley–Taylor approach), which integrates the influence of
moisture inputs, radiation, temperature, and humidity. Preliminary
results showed that patterns were generally consistent among
seasons, and we therefore compressed the analysis to show the
total number of significant differences (maximum of 60, or
15 years and four seasons) in relation to pixel water deficit and
LAI. Essentially, we here sought to assess whether or not
persistent significant differences between the experimental
(CMVL–CLVM) and control simulations were related to
patterns in meteorology or LAI.

Third, we conducted a wavelet analysis of daily, biome-
averaged soil water differences between the control and
experimental (CMVL–CLVM) simulations. Wavelet
transformations (Csillag and Kabos, 2002) are similar to
Fourier transformations but instead rely on the translation and
dilation of a wavelet function such that the function is nonzero
for a finite distance. Consequently, wavelet analysis can show
the extent to which the signal or image matches the wavelet
function at particular locations and resolutions. In an excellent
and comprehensible guide to wavelets, Torrence and Compo
(1998) showed how wavelet analysis could be used to
determine the structure and timing of ENSO. Using their
methods and a Morlet wavelet function with wavenumber equal
to six, we calculated the nonorthogonal continuous wavelet
power spectrum (equal to the square of the absolute value of the
wavelet amplitude). Conceptually, the wavelet power spectrum
shows how the input signal (difference between control and
experimental simulations) corresponds to the wavelet function

at a particular translation (1982–1997) and dilation (1 day to
several years).

Simulations and analysis: meteorological forecast errors

Simulations from the previous analysis indicated that
meteorology was the dominant forcing factor of simulated soil
water at both pixel and biome levels (see Results). Based on
this information, we next identified the meteorological forecast
error required to induce a statistically significant biome-level
difference at the end of a 7-day soil water forecast. The 7-day
forecast time is somewhat arbitrary but is a relevant time scale
for many management decisions.

For each biome, we considered the effects of four
meteorological forecast errors: (i) hot and wet (HW), (ii) hot
and dry (HD), (iii) cold and wet (CW), and (iv) cold and dry
(CD). To generate the forecast errors, we first calculated the
standard deviation of 1982–1997 daily maximum and
minimum temperatures. Using this information, we induced
progressively more extreme meteorological forecast errors (see
Figure 2 for schematic). We set the initial forecast error at 0.1
(–0.1) standard deviations (σ) for temperature and 5% (–5%)
for precipitation for hot (cold) and wet (dry) scenarios. For
example, the initial HW forecast error would include an
increase in maximum and minimum temperature of 0.1
standard deviations and a 5% increase in precipitation for all
days from 1 to 7 January. We did not vary radiation or humidity
fields. We then simulated soil water for the same time period
using the true Daymet meteorology. Next, we compared soil
water simulated with the true and erroneous meteorology at the
end of the 7-day period (7 January for the first week). If a t test
showed significant differences at the 5% level between the
simulations using the altered and original meteorology, we
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DBF ENF Grass Shrub

January 4 3 13 9
February 3 2 8 5
March 1 1 2 1
April 0 0 0 0
May 0 0 0 0
June 0 0 0 0
July 0 0 0 0
August 0 0 0 0
September 0 0 0 0
October 0 0 0 0
November 1 1 2 1
December 3 3 10 6

Note: Zero indicates less than 0.5%. DBF,
deciduous broadleaf forest; ENF, evergreen needle-leaf
forest.

Table 1. Percentage of LAI values filled with
climatological values.

Figure 2. Procedure for identifying the meteorological forecast
error producing a statistically significant difference in biome-level
soil water at the end of a 1-week forecast. This procedure was
conducted from 1982 to 1997 for 50 weeks per year in all biomes.



recorded this meteorological forecast critical error. If not, we
increased the alteration of the meteorological forecast by
increments of 0.2 standard deviations for temperature and 10%
for precipitation. Meteorological forecast errors were
iteratively increased until either significantly different soil
water was reached or a maximum perturbation of 2.1
standard deviation increase (decrease) in temperature and a
105% (–95%) change in precipitation was reached.

We conducted the same exercise for 50 weeks, each
beginning 7 days apart (i.e., 1 January, 8 January, etc.), and for
all years from 1982 to 1997. Simulations thus depicted, for
each biome and each meteorological forecast scenario, the
seasonally variable meteorological forecast error required to
induce statistically different biome-level soil water forecasts.
Note that no ordinal relationship is implied: the differences
could be positive or negative.

Results
Relative forcing

Interannual variability in meteorology exerted a stronger
control over simulated seasonal soil water than did interannual
variability in LAI (Figure 3). Holding meteorology to its
climatological values in the CMVL scenario produced
persistent differences in soil water, especially in the interior
west. Compared with other areas within the west, mountainous
and coastal regions tended to have fewer years with significant
differences. The east, especially in JFM and OND, had many
fewer years with significant differences. JAS, though, exhibited
a high number of impacted years in the east. The northern
regions of the east, such as New England and Minnesota,
demonstrated patterns opposite to those of the rest of the east in
JFM and OND. In the CMVL versus control comparison, the
shrub biome was most sensitive and had at least 85% of pixel
years impacted (Table 1). Biome impacts were next highest for
grass, with ENF approximately equal to DBF (Table 2). In the
CMVL scenario, only DBF in JFM and OND and ENF in JFM
had less than 50% of simulations affected.

By comparison, the CLVM scenario exhibited minor
divergence from the control scenario (Figure 3). In all seasons,
much of the eastern United States had no years with significant
differences, i.e., the CLVM scenario was statistically similar to
the control. Again, larger impacts occurred in the west, with a
clear division running northward from central Texas. Maximal
effects occurred in the northern Great Plains in JFM and OND
and in the desert southwest in all seasons. The west coast rarely
had any significant differences. By biome, ordinal relationships
were similar to those of the CMVL scenario, with shrub >
grass > ENF > DBF (Table 2). The magnitude in CLVM,
though, was smaller than that in CMVL, and no biome had
more than 50% of simulations with significant differences. In
all seasons in the DBF and ENF biomes, less than 10% of
simulations were affected (Table 2).

As suggested by spatial patterns in Figure 3, the number of
simulations with significant differences between control and

experimental (CMVL–CLVM) scenarios was related to climate
and LAI (Figure 4). For both CMVL and CLVM, increases in
the number of affected simulations were strongly associated
with declines in water deficit and LAI. In other words, a pixel
with very frequent differences between the control and either
experimental scenario was likely to have a large water deficit
and low average LAI.

The wavelet analysis again shows that climatic variation was
more important than LAI variation for simulation of soil water
(Figure 5). The wavelet power spectra (upper portion of
panels) illustrate that, when viewed at a biome level, CMVL
(Figures 5a–5d) induced extensive differences in soil water at
multiple scales and at many signal translations throughout
1982–1997. CLVM did not. ENF (Figure 5a) and DBF
(Figure 5b) had strong signals at 1-year and multiyear (1000–
1500 days) scales, with peak spectra from 1982 to 1992. For
grass (Figure 5c) and shrub (Figure 5d), the annual scale was
less prominent but the multiyear scale produced even higher
spectra. The CLVM wavelet power spectrum (Figures 5e–5h),
when shown on the same color scale as CMVL, was practically
absent, except for very low spectra in grass (Figure 5g) and
shrub (Figure 5h).

The lower portion of each panel, showing the difference in
daily biome-level soil water between the control and
experimental (CMVL–CLVM) simulations, further supports
the argument that meteorology variation impacted soil water
simulation more strongly than LAI variation. In addition to the
larger absolute magnitudes of the differences in CMVL than in
CLVM, several other patterns are apparent: (i) for grass and
shrub, most of the differences were greater than zero, indicating
that the control simulations generated higher soil water than
CMVL; (ii) for all biomes, differences were low or negative in
the late 1980s and high in the early 1980s and late 1990s; and
(iii) trends in the differences existed, especially from the late
1980s to the end of the record.

Meteorological forecast errors

In 13 out of a potential 16 biome–season combinations, the
seasonal temperature critical error exhibited a U shape or
inverted U shape (Figure 6). Weeks 15–35 (approximately
mid-April to early September) were susceptible to temperature
forecast errors of ±2.5 °C in nearly all scenarios. Critical errors
in winter approached ±10 °C, indicating that extremely
erroneous temperature forecasts were required to induce
significant errors in simulated 1-week soil water forecasts.
Although most scenarios had similar temperature critical errors
in summer, HW remained more sensitive to errors in the winter
than did HD, CW, or CD. Although shrub and ENF tended to
show a flattened annual curve, most biomes varied surprisingly
little in the shape of their temperature critical errors. Variability
in the temperature critical error tended to be lowest in summer
and highest in winter.

In comparison to temperature, the precipitation critical error
was much more consistent throughout the year (Figure 7). DBF
and ENF biomes in HD and CW scenarios had the U shape
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DBF ENF Grass Shrub

CMVL CLVM CMVL CLVM CMVL CLVM CMVL CLVM

JFM 35 1 48 6 62 24 91 47
AMJ 56 0 52 2 67 14 85 38
JAS 71 0 63 5 79 18 89 48
OND 34 0 51 6 71 24 88 46

Note: AMJ, April, May, and June; CLVM, climatological LAI variable meteorology; CMVL, climatological
meteorology variable LAI; JAS, July, August, and September; JFM, January, February, and March; OND, October,
November, and December.

Table 2. Percentage of 1982–1997 seasonal soil water simulations with statistically significant
differences between experimental and control simulations.

Figure 3. Number of years (1–15) with statistically significant (5% level) differences in
seasonal soil water between experimental and control simulations. Experimental simulations are
either climatological meteorology variable LAI (CMVL) or climatological LAI variable
meteorology (CLVM). Seasons are January, February, and March (JFM); April, May, and June
(AMJ); July, August, and September (JAS); and October, November, and December (OND).



common in Figure 6 and a large variability in the winter
precipitation critical error. The remainder of biome–season
combinations did not; most had low variability throughout the
year and a critical error of less than 1 cm for total 1-week
precipitation.

Discussion
Relative forcing

Our exploration of the relative forcing of ecosystem soil
water suggests that climatic variation is a stronger influence
than LAI (Figures 3–5). For limited durations, mostly in the
shrub and grass biomes, interannual phenological variability
was important (Figure 3), but in general, ignoring interannual
LAI variation appears to have a relatively minor impact on soil

water forecasts. We were somewhat surprised by this finding,
given the documented importance of vegetation phenology in a
wide global change community (Menzel, 2002; Parmesan and
Yohe, 2003) on climate and weather (Lu and Shuttleworth,
2002; Schwartz, 1992; Schwartz and Crawford, 2001; Xue et
al., 1996), on vegetation distribution (Chuine and Beaubien,
2001), and, depending on definitions used, on the terrestrial
carbon cycle (Baldocchi et al., 2001; Keeling et al., 1996;
Randerson et al., 1999; White et al., 1999; White and Nemani,
2003). We believe that at least three factors may affect the
importance of LAI on simulated soil water in this study.

First, the coarse time resolution (monthly) of the input
AVHRR data may have removed fine differences in interannual
LAI variability. The alternate 10-day data would have
generated extremely spurious results due to nonvegetative (i.e.,
contaminated) LAI irregularities. Regardless, extensive
interannual LAI variability was still present in the monthly data
and use of a finer time resolution would not have induced
significantly different results. Second, poor radiometric
resolution of the AVHRR inevitably limited the accuracy of
results. Third, the CLVM simulations were forced by the
realistic, long-term phenological signal: LAI was not the same
every day. In CLVM, 1 January would have had the same value
for 1982–1997, but LAI from 1 January to 31 December would
have varied, following the 1982–1997 average seasonality.
Thus the main forcing from the average phenological signal
was still present in CLVM, with only the interannual variability
removed. These simulations therefore must not be interpreted
to imply that vegetation seasonality or systematic biases in
remotely sensed LAI have no effect on simulated soil water,
only that interannual LAI variations were less important than
interannual climatic variation. In a global study using two
independently processed remote sensing datasets, Nemani et al.
(2003b) found similar results for NPP simulations.

Figures 3 and 4 suggest that, in both the CMVL and CLVM
scenarios, persistently effected regions had low annual
precipitation and low LAI. Similarly, Guillevic et al. (2002)
found that in global simulations of evapotranspiration, sparsely
vegetated regions, especially when wet, were highly sensitive
to remotely sensed vegetation variability. Guillevic et al. also
stated that “Although interannual variations in vegetation
properties still influence transpiration and interception loss at
the global scale in these runs, their impact on large-scale
regional climate is much weaker, apparently because the impact
is drowned out by atmospheric variability.” Our findings, with a
different modeling approach, examination of soil water not
water fluxes, a finer spatial resolution, and a longer temporal
record, also suggest that atmospheric variability exerts a
dominant control over interannual vegetation variability.

Meteorological forecast errors

Figures 6 and 7 provide a quantitative estimate of the
meteorological forecasts that will generate statistically
different 1-week soil water forecasts for the biomes shown in
Figure 1. These simulations have some limitations. First,
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Figure 4. Relationship between the number of affected simulations
and (a) water deficit and (b) LAI. This figure is based on a
combination of separate seasonal analysis, most of which showed
highly similar patterns. The y axis shows the number of simulations
with statistically different soil water content (at the 5% level). Note
that each point does not show the number of pixels in each bin,
simply the relationship between affected simulations years
(maximum of 60:15 years and four seasons) and explanatory
variables (average annual water deficit and LAI). Simulations show
CMVL versus control (solid circles) and CLVM versus control
(crosses). The number of pixels in bins of affected simulations
varies greatly between CMVL and CLVM, creating the perception
of differences in the absolute magnitude of explanatory variables;
both are derived from the same input data and have identical mean
water deficit and LAI. Data are for the entire simulation area and do
not distinguish among biomes.



agricultural regions are treated as grass: the results for these
regions therefore cannot be used for crop management or
forecasting. TOPS does employ an irrigation mechanism by
which soil water potential is maintained at a user-specified
level but, given the considerable variability in crop variety and

management and the relatively coarse spatial resolution of
these simulations, we chose not to simulate agricultural areas.
At a finer resolution and with detailed crop information, TOPS
can be used in agricultural applications (Nemani et al., 2003c).
Second, the information is presented at a biome level. Smaller
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Figure 5. Wavelet analysis of 1982–1997 daily differences in biome-averaged soil water between (a–d) climatological
meteorology variable LAI (CMVL) and control and (e–h) climatological LAI variable meteorology (CLVM) and
control. The biomes shown in Figure 1 are represented by panels a and e (ENF), b and f (DBF), c and g (grass), and d
and h (shrub). The upper portion in each panel shows the continuous wavelet transformation wavelet power spectrum
(square of the absolute value of the wavelet amplitude) ranging from low (blue) to high (red–brown) at length scales
ranging from 1 to 1825 days. CLVM power spectra are present but are usually so much lower than in CMVL that they do
not appear in the color scheme. Lower panels show the differences in kg·m–2. The red horizontal line is zero difference,
and the yellow line is the daily signal convolved with a Savitzky–Golay filter with a 1-year width.



regions may have different sensitivities to meteorological
forecasts. Given the relatively consistent shape of many of the
seasonal critical errors, though, we feel that the findings are
robust. Third, the simulations do not show ordinal information.
For many management applications, errors in one direction
may be the only concern. Fourth, we present data for 1-week
soil water forecasts. For long-lead management projects, such
as famine relief, this information may not be useful.

We found that temperature critical errors were relatively
unimportant in colder seasons, probably owing to lower
evaporative potential in cold, low-radiation periods.
Essentially, irrespective of the error in precipitation, winter
temperature errors had little effect on soil water forecasts.

Although precipitation critical errors were fairly constant,
some unexpected interactions occurred, especially in the more
mesic DBF and ENF biomes. Here for HD and CW, large
precipitation errors were required to induce soil water errors. In

HD in winter, the higher temperatures increased snowmelt and
more precipitation fell as rain, leading to an increase in soil
water, even though less precipitation occurred. In essence, the
liquid form of H2O increased with higher winter temperatures;
a very large decrease in precipitation input was therefore
required to generate a critical error. In CW, the increased input
of precipitation was stored more in solid form, leading to a net
decrease in soil water, even though inputs increased. Both of
these responses, though, had high standard deviation,
indicating that the balance between precipitation inputs and the
form of storage was spatially and temporally variable.

Variation in time scale sensitivity and potential
teleconnections

Wavelet analysis (Figure 5) suggests that biomes respond to
input forcings at different time scales. The annual scale is
strongest in the wavelet power spectrum for DBF and ENF,
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Figure 6. Temperature critical errors by biome and season. The x axes show time in weeks from
0 (early January) to 50 (late December), and the y axes show the biome-averaged meteorological
forecast error (1-week average temperature) required to generate statistically significant
differences (5% level) in biome-level soil water. Shaded portions show the standard deviation of
the 1982–1997 average. Panel rows are organized by meteorological forecast error type, namely
hot and wet (HW), hot and dry (HD), cold and wet (CW), and cold and dry (CD), and the panel
columns by biome shown in Figure 1, namely ENF, DBF, grass, and shrub. See text for
description of simulation process.



which maintain a generally high LAI in mesic environments.
For these biomes, the difference in soil water content between
an average meteorological year and an actual wet or dry year is
thus magnified by a greater difference in the absolute
magnitude of precipitation inputs and a larger canopy with
which to process water fluxes.

We speculate that the wavelet power at an approximately 4-
year scale is related to ENSO teleconnections. Torrence and
Compo (1998) showed ENSO wavelet power was strong at the
4-year scale during the mid- to late 1980s but was low
thereafter; Figure 5 shows the exact same pattern, but with
obvious biome-level differences in wavelet power. Scale-
averaged wavelet power in the meteorological variables at
subannual time scales (not shown but available on request) may
provide some explanation for this phenomenon. Three events of
high meteorological wavelet power (1984 temperature and
precipitation, 1986 precipitation, and 1990 temperature and
precipitation) bracket the generally strong 4-year wavelet
power signals in Figure 5. However, the grass biome had high
precipitation wavelet power throughout much of the late 1980s,
while the other biomes had average power for most of this
period. Haddad et al. (2002) found that grasslands demonstrate

a lagged multiyear periodicity in ecosystem processes in
response to precipitation cycles; combined with the wavelet
signal (Figure 5c), this implies that grasslands may have
responded more strongly than other biomes did to the ENSO
patterns in the 1980s.

Scientific and social issues for ecological forecasting

As regions with low LAI and precipitation are often
characterized by pressing societal needs for competent water
management decisions, our simulations highlight the crucial
nature of improvements in two fields: forecasting and
monitoring of precipitation in arid regions, which are often
highly heterogeneous (Comrie and Broyles, 2002); and remote
sensing of LAI, which is often confounded by soils with
variable brightness and wetness (Bannari et al., 1996). In
essence, Figures 3–5 imply that many areas with a potential for
high societal benefits from accurate soil water forecasts may
also be most strongly affected by errors in input meteorology
and (or) LAI. All possible efforts should be made to incorporate
the best possible meteorological forecasts into ecosystem
forecasting, including research into geographic and seasonal
forecast biases.
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Figure 7. Precipitation critical errors by biome and season. Panels as in Figure 7, except the y
axes show the 1-week total precipitation forecast error.



The importance of understanding forecast errors is well
known (Brown, 2002; Changnon and Vonnahme, 2003), as are
some of the challenges in implementing forecasts in the
management community (Callahan et al., 1999; Pagano et al.,
2001). Thus, information on critical errors (Figures 6 and 7) is
relevant for management uncertainty assessment and planning
only in combination with an understanding of actual
meteorological forecast errors. Constant updates to forecast
models suggest that historical literature assessments of
meteorological forecast errors may not be indicative of current
model performance; instead, internet-based tools should be
used. Near-past assessments of numerous forecast models, at
multiple forecast lengths, are available at the National Oceanic
and Atmospheric Administration (NOAA) National Weather
Service National Center for Environmental Prediction
Hydrometeorological Predictions Center (NWS NCEP HPC)
interactive model bias page (http://www.hpc.ncep.noaa.gov/
mdlbias/). Using this tool, users can relate the performance of
meteorological models to forecast sensitivity (Figures 6 and 7)
to assess, in a real-time sense, the likelihood of significantly
erroneous ecological forecasts. Current bias estimates are
better for temperature than for precipitation, suggesting that
forecasting of variables most strongly affected by temperature,
such as phenology or snowmelt, may be highly successful.

The simulations shown here imply that forecasts of soil
water are highly dependent on summer temperature forecasts,
precipitation forecasts throughout the year, and, to a lesser
extent, LAI forecasts in arid regions. We feel that with current
technologies, TOPS can be used with a high degree of
confidence when ongoing meteorological forecast bias is
closely tracked and interpreted in the context of Figures 6 and
7. With continual improvements in meteorological forecasting
technology and remote sensing, we expect that TOPS will
become a consistently useful tool for the arid regions most
critically in need of soil water content management.
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