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Abstract

Highly complex spatio-tempora environmenta data sets are becoming common in ecology
because of the increasing use of large-scale smulation models and automated data collection
devices. The spatid and tempord dimensions present red and difficult chalengesfor the
interpretation of thesedata. A particularly difficult problem isthat the relationship among
variables can vary in dramatically in response to environmenta variation; consequently, asingle
model may not provide adequate fit. The tempord dimenson presents both opportunities for
improved prediction because explanatory variables sometimes exert delayed effects on
response variables, and problems because variables are often seridly corrdated. This article
presents aregression strategy for accommodating these problems. The Strategy isillustrated by
acase study of smulated net primary production (SNPP) that compares ocean-atmosphere
indicesto terrestrid climate variables as predictors of SNPP across the conterminous United
States, and describes gpatid variation in the relative importance of terrestrid climate variables
towards predicting SNPP. We found that the relationship between ocean-atmosphere indices
and SNPP varies substantialy over the United States, and that there is evidence of a substantive
link only in the western portions of the United States. Evidence of multi-year ddaysin the
effect of terrestrid climate effects on SNPP were also found.

Keywords: spatio-tempora data, seria correlation, ARIMA models, NPP process models,

carbon balance.
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1. Introduction
To motivate our regression strategy for andyzing spatio-tempora environmental data, we begin

by discussing connections between net primary production and ocean-atmosphereindices. Net
primary production (NPP), the process of carbon sequestration via photosynthesis, appears to
be an important component of atmospheric carbon variation (Myneni and others 1997; Potter
and others 1999, Kimball and others 1997) and globa climate change (M€lillo and others
1993). Presently, relationships between NPP and climate across large areas are unclear
(Nemani and others 2002; Potter and others 1999). There are severd reasons for thislack of
clarity. Arguably, the complexity of the relaionship between climate and NPP is most
troublesome because it greatly complicates describing of the relative importance of different
climate variables over large areas.  Another complication isthat NPP is not directly observable
over large areas. Two common approaches to the observationa problem areto 1) usea
remotely sensed surrogate variable such leaf areaindex in place of NPP, and 2) smulate NPP
using aprocess modd. While the surrogate variable approach offers the advantage of using redl
observations, data are available only for the past 20 years or so. Consequently, the scope of
inference drawn from surrogete variables is limited.

In contrast, process models can smulate NPP far into the past, though the accuracy of the
estimates depends on modd realism, accurate input variables, and accurate land cover type
identification. Process modes smulate photosynthesis and respiration using nonlinear functions
of ste-gpecific variables such as average dally air and soil temperature, leaf areaiindex, available
s0il moisture, and solar radiation (Hunt and others 1996; Ito 2002; Potter and Klooster 1997;
Thornton and others 2002; White and others 2000). While SNPP process models are known
and determinidtic, they are dso complex nonlinear functions involving numerous biophysica
vaiablestha vary spatidly and seasondly.  Consequently, it is difficult to succinctly describe
the relative importance of the climate variables as they vary over large geographic regions. Yet
thisinformation isimportant for understanding carbon cycling and globa climate processes.
Mélillo and others (1993) and Nemani and others (2002) have used process models and their
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esimates to investigate SNPP-climate rdationships. These analyses were not satistica in
nature, and so did not Smultaneoudy estimate the effects of multiple variables on SNPP.
Additiondly, they were not able to test the significance of one or more variables after accounting
for the effect of others.

Linear regresson andysis of the relationship between SNPP and terredirid climate variables
isuseful for severd reasons. The linear form of the modd s alows immediate and unequivoca
interpretation of the effect of each predictor variable on the reponse varigble. The wedlth of
datistical methods associated with linear regression analysis provides for tests of sgnificance,
measures of modd fit, confidence and prediction intervals, and methods for the andysis of
resduas and leverage. Statistical models and methods for correlated ecologica data have
been presented by Epperson (2002) and Jones and Zang (1997), among others, and case
sudies andyzing spatidly and temporaly correaed environmenta data collected over smal
areas are discussed in Nychka and others (1998). These articles do not address spatial
variation in the relationship between response and predictor varigbles. In addition, strategies for
accommodating seasond variation are not discussed though seasondity is an important attribute
of many biologic response varigbles.

Our gpproach to this problem analyzes SNPP using separate regressions for each location
among a set of locations systematically sampled across the study area. This gpproach is quite
generd asit can be used for problemsin which observations are directly observed over large
areas and over time, such remotely sensed data, or problems in which the modds generating the
data are stochastic (for example, Keane and others 2002). In this case study, the regression
andysis gpproach aso permits investigation of tempora aspects of the relationship between
SNPP and terrestrid climate that are not explicit components of the original NPP process
modd. Findly, aquantitative measure of the extent to which alinear terrestrid climate model
can approximate SNPP is a useful benchmark against which to judge the information content of

dterndtive variables such as ocean-atmosphere indices towards explaining variation in SNPP.
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The articleis organized asfollows. In Section 2, we discuss the case study and our generd
approach to accommodating seasona and spatia variation in modeling NPP. Section 3
presents the k-th order autoregressive regresson modd and its application to andyzing the
relationship between NPP and predictor variables. We aso discuss methods of assessing
modd fit and measures of trend. Section 4 presents results of the case study. Section 5
compares recent empirica NPP modeling methods to the regression strategy presented herein,
and the article concludes in Section 5.

2. The Case Study

Evidence of connections between terrestria and ocean climate has been presented by Dai and
others (1997), Dima and others (2001), Hurrdl (1995), and Hurrell (1996). Ocean climate
effects on terrestrid climate gppear to be delayed in some stuations (Dimaand others 2001,
Hurrell 1995; Potter and others 1999; Sutton and Allen 1997). Connections between ocean
climate and vegetation production have been addressed by Anyamba (1994), Anyambaand
Eastman (1996), Cane and others (1994) and Myneni and others (1996). With respect to the
conterminous United States, Li and Kafatos (2000) and Mennis (2001) present evidence of
correlaion between seasond means of normalized difference vegetation index and equatoria
Pecific seatemperatures between 1982 and 1992. Links between ocean-atmosphere indices
and terrestrid climate suggest smilar links between ocean-atmosphere indices and SNPP
(Nemani and others 2002), though the extent and strength of these links are largely unknown.
Investigation into the connections between SNPP and ocean-atmosphere indices are motivated
by the need to further understand large-scale ecosystem interactions.

The objectives of the case sudy were to 1) compare the extent and strength of the
relationship between SNPP and two sets of predictors, ocean-atmosphere indices and
terredtria climate, and 2) investigate the effect of scale on modd fit for the two sets of
predictors. Our approach was to empirically model SNPP as a function of three terrestria
climate variables (temperature, precipitation and solar radiation), and of three ocean-

atmogphere indices series [the Southern Oscillation Index (SOI), the Pacific Decada Oscillation
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(PDO), and the North American Oscillation (NAO)], and compare model fit. The anadysiswas
conducted at two scaes; the finer scae data consisted of asample of 135 pixelsfrom a2’
lattice cover of the United States, and the coarse scale data consisted of seven regiona
averages computed from the pixel-scale data. The pixel-scale terrestrid climate variables pose
arigorous standard against which to compare ocean-atmosphere indices because the terrestrial
climates variables are spatialy explicit inputs to the process mode. In contrast, the ocean-
atmosphere indices indirectly measure climate at grest distances from the pixel locations, and so
are, a most, moderately associated with terrestria climate (Hurrell 1995, 1996).

The study area is the conterminous United States and the study period is 1901 to 1993.
This areaiis large enough to be an important source of carbon on agloba scale; moreover,
long-term climate datais available from the United States Historica Climate Network
(USHCN) (Knapp and Smith 2001), and NPP process model estimates are available. In
particular, we obtained daily climate and NPP process model estimates from the BIOME-BGC
amulation mode (Kittel and others 1997; Schimel and others 2000; Thornton and others 2002)
for 1901 through 1993. The BIOME-BGC modd smulates terrestrial ecosystem carbon,
nitrogen, and water cyclesfor each of 3168 pixelsin a¥%® lattice coincident with the VEMAP
terredtria climate lattice (Kittel and others 1995). A modd of daily leaf canopy photosynthes's
is used to estimate carbon absorption by vegetation. Totd respiration is smulated as the sum of
maintenance and growth respiration estimates, and the difference between gross carbon uptake
and totdl respiration is SNPP. To reduce the computational demands of usng dl 3168 pixels,
we sysemdticaly sampled the%° lattice by projecting a2° lattice over ¥2° |attice cover and
sdecting those ¥2° pixels with centers that coincided with 2° |attice centers (Figure 1). A
ggnificant portion of severd sampled pixds were predominantly covered by water; these pixels
were replaced by nearby pixels that were not appreciably covered with water. Lastly, we refer
to the SNPP data for a particular pixel, or aregion, as a seriesin recognition of the posshility
that the data obtained from a particular pixel or region may be seridly correlated.
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2.1. Spatial and Seasonal Variation in SNPP

The relationship between NPP and terrediria climate varies across the conterminous United
States. For example, the onset of the growing season varies with latitude, as does the effect of
March precipitation on NPP. Consequently, the analysis of SNPP at a particular location
depends in part on identifying atime period that encompasses most of the total annual net
production of carbon, but aso is short enough that the relationship between predictor variables
and SNPP is nearly time-invariant throughout the period. We determined these periods,
henceforth referred to as growing seasons, in two stages. First, an exploratory anadysis of
gpatid variation in calendar monthly means of absolute SNPP was conducted. Theresults are
described immediately as they provide mativation for the methods thet follow. A star plot
(Johnson 1998) shows that absolute NPP is greatest in the eastern half of the United States and
that maximum absolute NPP occurs in June and July in the north, and roughly amonth earlier in
southern regions (Figure 2). SNPP decreases rapidly after midyear except in Floridawhere
monthly mean SNPP is rdaively congtant from May through October. Principa components
andysis of between-pixe variaion in monthly mean SNPP indicated that five different sources
account for most (82.2%) of the spatial variation in SNPP. Star plots showing the eigenvector
coefficients, or principal component loadings, for the five most dominant eigenvectors were
constructed, and adjacent pixels with smilar eigenvector coefficients were aggregated to form
preliminary regions.

The second stage of defining growing season refined the preliminary regions through an
iterative process of aggregating pixes as regions, assessng the fit of regiona regresson models
of growing season SNPP, and reassigning pixds to regions to improve modd fit. The predictor
variables usad in the regress on models were growing season means of precipitation,
temperature and solar radiation, and previous winter and previous summer means of
precipitation, temperature and solar radiation. Hence, therewere 3 x 3 = 9 predictor variables
and 93 — 1=92 observationsfor each model. These SNPP models were used only for

ng modd fit; more thorough andyses involving variable sdection, andyss of resduds,
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and interpretation of model coefficients were carried out only after the regions were finalized.
Seven regions were identified, and are henceforth referred to as the Interior West, Pacific Coast
and Southwest, Great Plains, Mid-Atlantic, Northeast, Southcentral, and Southeest (Figure 1).
Theregiond definitions of seasons are shown in Table 1, and cdendar monthly means are
plotted againgt caendar month in Figure 3. Those months that were excluded from aregiond
growing season are collectively referred to as awinter season. Seasond patterns are generaly
smilar throughout the conterminous U.S,, with most regions undergoing rapid increasesin
monthly mean NPP between April and May, and declines from July onward. The monthly
gandard deviations of SNPP exhibit a pattern Smilar to the means (smdl vaues in the winter
months relative to the summer months). For instance, for the Southwest and Northcentral
regions, the January standard deviations were 0.066 and 0.030 (g/m? /day), wheress the June
valueswere 1.790 and 2.018 (g/n? /day). Because SNPP monthly means are nearly constant
in the winter, we infer that winter climate has little immediate effect on SNPP over much of
conterminous United States. This observation implies that fitted rel ationships between annualy
measured biophysica variables and annual climate summaries are potentidly subject to aloss of
accuracy because winter climate variation becomes part of annud climate variation, yet winter
climate may not be directly connected to the biophysical response variable.

Theregiona and pixel SNPP series were slandardized for regresson anadyss so that the
parameter estimates obtained for different locations would be comparable. Specifically, the
SNPP seasonal series for each pixel consisted of total growing season SNPP (g/m?) for the
93 years of observation. These tota's were standardized using the sample mean and standard
deviation of the 93 values. Regiond series were obtained by first computing unstandardized
regiond series by averaging unstandardized pixel totals within region for each growing season;
then, the unstandardized regiond series were standardized using the sample mean and standard

deviation of the unstandardized series.
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2.2. Ocean-Atmospherelndicesand Terrestrial Climate Variables

Ocean climate is represented by three series of monthly values obtained from National Centers
for Environmenta Prediction. Thefirst of these series, the Pacific Decadd Oscillation (PDO), is
ameasure of tropica and Northern Hemisphere extratropica Pecific basin sea surface
temperature derived from the monthly Historical Sea Surface Temperatures Dataset (Mantua et
a. 1997). The Southern Oscillation Index (SOI) seriesis a measure of standardized sealeve
pressure difference between Tahiti and Darwin, Audtralia, obtained from NOAA/NECP
Climate Prediction Center, Thethird series, the North Atlantic Oscillation (NAO), messures
the difference in normalized sealeve pressures between The Azores and Icdland (Hurrdl 1995).
Monthly ocean-atmosphere indices were averaged to produce seasond series for each region.
For example, the mean of the PDO observations for the region  growing season for year ¢ is
GIPO =n 1y o alPO where D denotes PDO for year t and month m, G
denotes the set of growing season monthsin region r, and n,- isthe number of monthsin the
growing season for region . We aso constructed lagged versions of ocean-atmosphere indices
to account for delayed effects on SNPP. Herein, we say that a particular predictor of SNPP
(say PDO) for year t is represented by a set of components. These components are the current
growing and previous winter season mean and up to three previous growing and winter season
means. Notationally, 7 ¢ is the seasona mean of PDO for the winter preceding growing
season ¢ for region r, and Gf’ DO isthe growing season meen for the year preceding ¢, and so
on.

Observations on monthly mean daily temperature, monthly tota precipitation and monthly
mean daily solar radiation were obtained for each of the 135 pixels sampled from the VEMAP
terrestrid climate ¥2° lattice cover of the conterminous United States. Mean growing season
temperature, G ;fmp , for pixd i and year t was computed by averaging over those days
belonging to the regiona growing season. Mean growing season solar radiation was computed

smilarly and is denoted by Gftom’". Regiond means follow the same notation as established for
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ocean-atmosphere indices; for example, vaf _e(fp

denotes the total winter precipitation for
region r and the growing season preceding year . Plots of the regiona means of these climate
variables againg year show few notable patterns, in particular, there was little visud evidence of

trend over timein any of the series.

3. Regression Analysis

Our modd fitting strategy was organized around the objectives of describing the relative
importance of the terrestrid climate variables and ocean-atmosphere indices towards predicting
SNPP across the study area, measuring the information content of ocean-atmosphere indices
and terregtrid climate variables towards predicting SNPP at two scaes (pixel and region), and
quantifying evidence of SNPP trend during the study period. Modds were fit usng variables
from one of two sets of predictor variables: ocean-atmosphere indices and terrestria climate
variables.

In generd, data collected over time or space should not be trested as independent without
careful consderaion. Observations are dependent when near observations (near in time or
gpace) are more dike than distant observations, and a consequence of ignoring spatia and
tempora correlation is alost opportunity to exploit Smilarities among observations and thereby
improve the accuracy of the parameter estimates. In addition, if correlation isignored, then
ggnificance tests used for selecting predictor variables will tend to yield incorrect observed
sgnificance levels (p-vaues). When observations are positively correlated, the observed
ggnificance levels are usudly biased downwards (i.e,, too smdl). Inthisanayss, both serid
and spatid correlaion isaconcern. It ispossible to account for either source of correlation
provided that the correlation structure is relatively smple, and provided that the relationship
between the response variable and the explanatory variables does not vary temporaly or
gpatidly. Inthisgtuation, it is reasonable to assume that the relationship between SNPP and the
predictors at a particular location is nearly time-invariant. On the other hand, we previoudy
argued that there is considerable doubt that the relationship between response and explanatory
variablesis spatidly invariant over the sudy area. Consequently, our strategy was to model
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data originating from asingle spatid unit (pixel or region) while accounting for serid correlation.
Data from different spatial units was not used to fit a particular mode because we could not
judtifigbly assume that data from different spatiad units follow a common modd. Asthere are
135 pixelsand 7 regions, the adopted strategy of fitting separate models for each spatid unit
required many modes, and an even larger number of sgnificance tests. Methods of controlling
experiment-wise Type | error when testing the significance of explanatory variables were not
used because these methods are overly cautious when many tests are carried out (Ott and
Longnecker, 2001, p. 438); instead, emphasis was placed on describing the fitted moddls and
summarizing modd fit in terms of percent variation in NPP explained by a particular set of
predictor variables.

3.1. Autoregressive Models

Autoregressive modd s provide a suitable framework for regression andysis with seridly
correlated response variables. Harvey (1989), Ramsey and Schafer (2002, p. 436), and
Shumway and Stoffer (2001) discuss Statistical aspects of regression with autoregressive
models, and Epperson (2000) and Manly (2001, p. 212) discuss ecologica and environmental
goplications. To et up the generic modd, let z; denote an observation on a response variable
atimet=1,...,T,letzy 4,...,xp denotethe vaues of p predictor varidbles at time ¢, and
leteq, ..., e denote independent and normally distributed residuas with mean 0 and constant
variance. Two sets of parameters are used. The autoregressive parameters ¢, ... , ¢ are
used to modd the correlation structure among the response variables, and the regression
parameters 31, ... , Bp are used to mode the relationship between the response and predictor
variables. The AR(k) modd specifiesthat z depends on the past £ observations z;_ 1,

..., 24}, acording to
k p
d=Y Gra—r+ P Pswst+er (1)
r=1 s=1

If the AR(k) modd is correctly specified, then theterm > "¢z, accounts for seria
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correation and the resduas are independent. Note that thefirst £ observations zq, ... , 2
cannot be modeled via equation (1) because a complete set of past observationsis unavailable
for these observations.

Often, trend over time can be accounted for in equation (1) by introducing a polynomia
function of time. In this Sudy, there was rdatively little visud evidence of trend in the pixel and
regiona mean NPP series, so we consdered only second-order polynomia functions of time.
Thus, the two trend components were the linear component 1 ; = ¢, and the quadratic
component z ; = 2. Because our interests differ with regard to trend versus ocean-
atmosphereindices and terredtria climate variables, we use the term explanatory variables to
refer to any of these terms and predictors to refer to ocean-atmosphere indices and terrestria
climate varigbles.

Thefull ocean dimate modd for the ith pixd specifiesthat z;;, the standardized total growing
season SNPP for pixd i for the tth yeer after 1903, = 1,...,7=90, isafunction of PDO,
SOI and NAO given by

Zit = P12ip—1 + 0+ Gpzip—k ()
+B1GP0 + B W PO + B3GL ] + - 4 B WY
I I I
+ B0 G0 + Bro WO + - + B W24

NA NA NA
+ 017Gy, 04 B1sW,, Oty 524WZ-¢,3O

+ Bost + Pogt® + it

An intercept is not included in the modd because the standardized NPP series have mean 0.
Thefull AR(k) mode as afunction of the terrestrid climate varidblesis

Zit = ¢zip—1+ o+ Przip—k (3)

temp temp temp temp
TG, T+ RW, T+ B3Gi,t—1 +o O Wz’,t—S

precip precip precip
+ 6o G, + oW, + -+ Bi6 Wiis
+ Brr G 4 Brg WO ﬁm”@‘fﬁ%r

+ Bost + Pagt® + €i-
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The AR(k) regional models of NPP differ only in that the response and predictor variables are
regiona means computed by averaging pixd vaues.

3.2. Modd Fitting

We used a Cochran-Orcutt scheme for fitting the AR(k) regresson model (Venables and
Ripley 1999, p. 429). Our drategy was to first search for the smalest value of £ necessary to
remove autocorrelation, and then sdlect explanatory variables usng conventionad multiple
regresson methods. The search for £ began by computing the maximum likelihood estimates of
the parameters for the full AR(1) mode (equation [1] with & = 1). Then, the pixel (or regiond)
NPP series and the explanatory variables were pre-whitened using the maximum likelihood
esimate 3 1 (Box and Jenkins 1976, p. 379). Pre-whitening eiminates serid correlation by
subtracting the portion of z: and x5 ¢, s = 1,..., p, atributable to the past observations from
both sides of formula (1) by computing =¥ = 2 — ¢, 21, and T, =Tt — G151
Conventiona multiple regresson methods, including variable sdection techniques, can be used
without modification provided that pre-whitening has succeeded and the resduds are normaly
digributed. Checking the residuals for serid correlation and non-normdity is a necessary step
in the application of the AR(k) modd.

Mode residuas were tested for autocorreation using the Box-Ljung Q-datistic (dso called
the Portmanteau statistic) (Harvey 1993, p. 79). If the Q-gatistic did not present evidence
againg the null hypothesis of no autocorrdation (that is, the p-vaue associated with (Q was
greater than 0.05), then the AR(1) model was adopted. If there was evidence of
autocorrelation, then the AR(2) model was tentatively adopted and maximum likelihood
edimates gg 1 and 52 were computed. The data were pre-whitened by computing z; = z

— 51 21 — 52 249 and x;t =Tt — 51 Tgp—1 — $2x57t_2. Regression parameter
estimates were recomputed and the new residuals assessed for autocorrelation If these

residuas were autocorrelated, then higher orders of £ were to be investigated in the same
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fashion. It was not necessary to do so, though. The second stage of the modd fitting (described
in detall below) sequentialy removed non-sgnificant variables from the model.

An dterndaive gpproach to the Cochran-Orcutt scheme smultaneoudy computes maximum
likelihood estimates of both the regression and autoregressive parameters. Consequently, the
maximum likelihood approach is dightly smpler to execute than the Cochran-Orcutt scheme.
However, the maximum likelihood estimators and associated likelihood retio tests may be
subject to substantia bias unless the number of observationsis much larger than the number of
mode parameters (e.g., 7' > 30p) . Becausethe series used in thisandyss were rdaively
short (1= 93), we used the Cochran-Orcutt scheme.

3.3. Variable Selection and Assessment of Modd Fit

Our variable sdlection procedure was applied to each of the three predictor variables
representing ocean-atmosphere indices, or terrestria climate, one at atime. Initialy, the full
model [equation (2) or (3)] was adopted. In the case of the ocean-atmosphere indices, we first
assessed the sgnificance of PDO by successvely removing the highest-order lag components
until the remaining lower-order terms were jointly significant. That is, first Wl.il_)g, then

Gf ‘PO and o on, were removed from the model until the remaining components were found
to be sgnificant a the o =0.05 level. The sgnificance tes, often cdled the extra-sums-of-
squares F-datistic (Ramsey and Schafer, 2002, p. 281), compares the error sums-of-squares
between the modd containing a particular set of explanatory variables and the model containing
none of the terms while accounting for differences in numbers of explanatory variables between
the two models. After andyzing PDO, the significance of SOI was investigated using the full
model [equation (2)] except that non-significant PDO components were omitted. Lastly, NAO
was treeted in the same way, by adopting the find SOl modd astheinitid mode. Generdly,
the order in which variables are tested can affect the outcome of variable selection; in this

andlys's, though, the effects of order were negligible.
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The same strategy was gpplied to the trend components. First, we tested for significance of
both the linear and quadratic components; if these were not jointly sgnificant, then we tested for
the sgnificance of the linear component done. However, for the purpose of describing
directiond trend (upwards or downwards) in NPP, we aso fit models containing the significant
predictor variables and the linear trend component (regardiess of significance) while excluding
the quadratic term (regardless of sgnificance) and using the unstandardized, but pre-whitened
SNPP obsarvations. An estimate of percent annua change after accounting for sgnificant
predictors was computed by dividing the linear trend coefficient by the SNPP series mean.

A possible dternative to jointly testing lower-order lag componentsisto test individua lag
components separately using at-test. This strategy is counter to our presumption thet if a
predictor variableis related to SNPP, then it affects SNPP through a complete set of lag
components up to some order. Thus, Sngly testing each component may lead to implausible
modelsif ahigher order term isjudged to be significant, but one or more lower-order terms are
not.

Two coefficients of determination were used to mesasure the percent varigtion in the
response variable explained by the fitted model. The coefficient of determination Rf measures
the percent variation in SNPP (not pre-whitened) explained by the final mode; hence, these
models may contain one or both of the trend components. This Satistic was computed as R?

= (SST — SSE)/SST, where SST isthe total sums-of-sguares about the seriesmean z = 0,
SSE =" (% —%)? isthetota error sums-squares, and%; isthetth fitted value. If oneor
more trend components were retained in the fina modd, then R% would reflect the contributions
of both the predictor variables and trend components towards explaining variation in SNPP.
Because our interests lie primarily with the predictor variables, a second coefficient of
determination Rg was computed after removing the trend components, regardless of
sgnificance, and refitting the modd. The coefficient R% messures the percent variation

explained by only the ocean-atmosphere indices, or terrestrid climate predictors. Note that if
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R? > R2, then one or both of the trend components were retained in the model used to
compute R

4. Results

The analyss of the regiond seriesis discussed firdt, followed by the andysis of the individua
pixd series. Ocean climate explained 35.9, 51.6, and 31.8% of the variaion in SNPP for the
Interior West, Pacific Coast and Southwest, and Mid-Atlantic regions, respectively, as
messured by R% (Table 2). For the remaining four series, none of the ocean-atmosphere index
series were found to be sgnificant, and so no variation in SNPP was explained by ocean-
aimosphereindices. Table 2 also shows that terrestria climate variables were very good
predictors of SNPP given that Rg varied from 70.9% for the Pecific Coast and Southwest to
89.3% for the Southcentra region. Based on the Q-staidtics (Table 2), the AR(1) modd was
judged to be adequate with respect to the assumption of independently distributed residuals.
Normd probability plotsindicated that the residuas were norma in distribution.

Table 3 shows the fina model coefficients for the regiona ocean climate modds. PDO was
adgnificant predictor of SNPP for the Interior West and Pecific Coast and Southwest regions,
NAO was sgnificant for the Mid-Atlantic region, and SOl was sgnificant for dl three regions.
Thereis clear evidence of delayed effects of ocean-atmosphere indices on SNPP given that the
complete set of lag components was retained in the fitted models for four of the Six predictor
variables. It should be noted that the magnitude of the higher order SOI lag coefficients are
subgtantialy smdler than the current growing season coefficient. This result suggests that the
SOl effect is comparatively short in duration. Table 3 shows that lag coefficients vary sgn when
comparing lag coefficients for a particular ocean-atmosphere index, and this suggests that the
relationship between ocean climate and SNPP is highly complex. Findly, smilarities between
Peacific Coast and Southwest and Interior West ocean-atmaosphere index coefficients imply

smilar ocean climate effects across the western third of the United States.
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Linear trend coefficients and estimated annua percent changein SNPP are shown in Table
4. After accounting for significant predictors of SNPP, there is satistical evidence of linearly
increasing trend between 1901 and 1993 in dl regional series except the Mid-Atlantic and
Southeast. Both the ocean-atmosphere index models and the terrestrid climate models yielded
the greatest annua percent change estimates for the Great Plains and Southcentral regions.
Estimates of 0.119% and 0.150% were obtained for the Great Plains, and 0.136% and
0.171% for the Southcentral regions (Table 4) from the terrestrid climate and ocean climate
models, respectively. Differences between the two types of models are atributable to different
predictor variables comprising the models.

Terredtrid climate explained a substantia portion of the variation in SNPP at the pixd scae.
Specificaly, Table 5 shows that the regiona averages of the terrestria climate modd coefficients
of determination (R%) varied between 64.5 and 85.6%. In contrast, ocean-atmosphere indices
were substantialy less useful for modeling SNPP. Table 5 aso shows that ocean-atmosphere
indices were found to be sgnificant (i.e, R% > () for only 44 of the 135 series, and that when
sgnificant, the regional means of R% datistics varied between 8.9 and 27.0%. Theregiond
means of R% are not comparable with the corresponding means for R% because different sets of
pixel vaues were averaged in computing the two datigtics. Spetid variation in Rg over the
conterminous United States is subgtantid; in particular, Figure 4 shows that the mgority of
pixdsfor which R% > ( are located in the southwestern portion of the United States. In
contragt, there was very little spatid variation in the fit of the terrestrid climate modds, and a
corresponding figure for these modd s is not shown.

The autoregressive modeling strategy appears to have been successful at accounting for
serid corrdation given that the Q-dtatistic was Sgnificant a the 0.05 leve for only 6.7% of the
135 terredtria climate modd resdud series and 11.6% of the ocean climate modd residua
series. The assumed Type | error rate (or significance level) of 5% implies that gpproximatey

5% of dl resdud seriesthat aretruly free of serid correaion will be (incorrectly) found to be
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ggnificant; hence, the observed fraction of sgnificant Q-statistics is condstent with there being
little serid corrdlation in the resdud series.

Figures 5, 6 and 7 summarize the estimated coefficients for the terrestrid climate variables.
For each region and lag component, we averaged those coefficients that were found to be
ggnificant and plotted the averages againgt lag. Figure 5 shows that current growing season
temperature to be negatively associated with SNPP for dl regions, and that the largest effects
(in terms of magnitude) of SNPP were observed for the Southeast (—0.237) and Southcentral
(—0.235) regions. In contrast, the coefficient means associated with the previous year growing
Season temperature (lag 2) were pogtive for al regions. In generd, winter season temperatures
are rlatively lessimportant than growing season temperatures, and inconsistent in Sgn among
regions. Figure 6 shows estimated effects of current growing season and previous winter
Season precipitation were postive for al regions, though previous winter season precipitation is
far more important, based on the magnitude of the coefficients. The effect of previous winter
precipitation on SNPP, as measured by the mean of the previous winter coefficients, was
greatest in the arid regions of the United States, namely, the Great Plains, Interior West, and
Pacific Coast and Southwest regions. The coefficient means associated with current growing
season solar radiation are negative for al regions, and the greatest impact on SNPP are
associated with the Northeast, Southcentral and Pecific Coast and Southwest regions (Figure
7); in contrast, previous growing season solar radiation was found to be positively associated
with SNPP for all regions. As expected, winter season solar radiation has little effect on SNPP,
regardless of lag. Because the terresiria climate and SNPP series were standardized, the
coefficients associated with different climate variables can be compared to assessthe relative
importance of these variables. Comparing Figures 5, 6, and 7 shows that the effect of previous
Season precipitation is an order of magnitude grester than al other effects, including temperature
and solar radiation. For example, the average of the regional means of the previous season
precipitation coefficients was 4.2, whereas the current growing season mean of the temperature

and solar radiation coefficients were —0.10 and —0.19, respectively. Findly, a corresponding
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set of three coefficient plots was congtructed using coefficients obtained from the regiond
terredtrial climate models. These plots are Smilar in appearance to Figures 4, 5, and 6, though
the generd patterns are not as striking.

In contrast to the andlysis of the regional SNPP series, there was substantialy |ess evidence
of trend a the pixel scale after accounting for sgnificant predictors. Because differences
between 12 and R? are attributable to the trend components, a comparison of the regional
means of these Satitics derived from the terrestria climate modds (Table 5) shows little
evidence of trend in SNPP at the pixel scale after accounting for terrestrid climate variables.
Comparisons of the regiona means of Rf and R% computed from the ocean climate models
cannot be drawn from Table 4 because different pixels were used in computing the two regiond
means. However, trend components were not cons stently important when fitting the ocean
climate models, given that trend was found to be significant for 47.4% of the 135 pixds. We
atribute thisresult, a least in part, to weak power semming from unexplained variaion in the
pixel series. To illudtrate, when predictor variables were ignored and percent annua change
was computed for al pixes, then the median percent annua change was 0.135%, and the
regional medians of percent annua change varied between 0.047% for the Mid-Atlantic to
0.168% for the Southcentra. These vaues are consstent with the estimates of annud change

obtained from the regiona series (Table 4).
5. Comparison to Empirical NPP Modéding Methods

Among the promising recent gpproaches to empirica modelling of NPP are modified production
efficiency modds (PEMSs) driven by remotely sensed data (Goetz and others 1999). The PEM
gpproach exploits remotely sensed data for modding, thereby reducing the requirements for
initid state variable specification and but aso predictive utility. Zamolodchikov and Kardlin
(2001) developed aregression-based model of carbon flux for the Russian tundra that used
climate and Gl S-based biophysical variablesto predict NPP. The advantage of their approach

isthat direct measurements of carbon flux were used to devel op the models, and that regression
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methods were used. However, extension is problematic to other environments because of the
difficulty of measuring NPP. Jang and others (1999) developed an NPP modeling approach
that calibrated smple process models via regression a each point in alattice. Alexandrov and
others (2002) propose an "inverson” method of congtructing empirical modds by calibrating
NPP process modds (such as the Miami modd [Lieth 1975]) using biome-averaged NPP
esimates. Their method produces smple globa models, though moded accuracy is aconcern
because rdaively few, and fundamentally different data are used in modd fitting .

The regression gtrategy proposed in this article yields empirica modds of SNPP that may be
used for predicting NPP. Our method departs from other empirical modeling approaches by
using climate data collected over many yearsto fit the predictive modds. By usng SNPP data
generated over many years, a substantial amount of process variation isredlized and (partialy)
accounted for by the fitted models. A weakness of our approach isthat process modd errors
appearing in the SNPP datawill be carried over to the regresson models. An advantage
common to Jang and others (1999) is that our method generates spatidly explicit modds across
alattice and dlows for a high degree of spatia resolution. Finaly, our gpproach uses well-
understood Statistical methods though out, and exploits seasondlity and delayed climate effects

to improve modd accuracy.

6. Discusson and Conclusion
This article has presented a strategy for andyzing spatio-tempora biophysica data. A
digtinctive and nove feature of this strategy is that separate autoregressive regresson modes are
fit a each location among a set of locations regularly didtributed across the study area. By
doing so, spatidly induced differences in the relationship between the response variable and the
predictor variables can be investigated. This strategy significantly advances our abilitiesto
andyze the behavior of complex ecologica models.

The case study andysis showed, unsurprisingly, that the three terredtrid climate varigbles

provide good linear models of SNPP.  The ocean-atmosphere index series PDO and SOI yield
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some predictive information &t the regiona scales for the Interior West and Pacific Coast and
Southwest, while NAO provides week information for the Mid-Atlantic region. At the pixd
scae, ocean-atmosphere indices provide roughly smilar predictive information as &t the regiona
scae, and over asmilar geographic area. For remainder of the conterminous United States, the
methods and data used in this study did not find consstent and useful associations between
SNPP and ocean-atmosphere indices.

At theregional scde, there is statistical evidence of trend in SNPP for dl regions except the
Mid-Atlantic and Southeast. Moreover, estimated percent annua change (Table 4) was found
to be fairly consstent among regions. Upward trend in SNPP is consistent with trend in
atmospheric CO, during the 20th century; however, changesin land use during the study period
complicate comparisons of SNPP and atmospheric CO5. At the pixel scae, percent annua
change in the SNIPP series tended to be relatively large (ignoring predictor variables). The
linear trend coefficients, however, tended not to be sgnificant when terrestria climate predictors
were accounted for. Thisresult impliesthat some of this changeis at least partialy accounted
for by terredtrid climate.

Regresson modeling of SNPP as a function of ocean and terredtria climateis grestly
improved by lagging the predictor variables. Two explanations for the ussfulness of lagged
variablesare: 1) climate variables have long-term effects on NPP, and 2) some climate patterns
are multi-year in duration (Latif and Barnett 1994; Hurrdll 1995). Winter precipitation and
growing season solar radiation coefficients consstently reversed sgn when comparing current
and previous years effects on NPP (Figures 6 and 7). We suggest that this result is attributable
to using linear functions of these variables to gpproximate nonlinear rdationships between soil
moisture availability and SNPP. An example of alinear gpproximation that produces
coefficients of different Sgn is given by aresponse variable i that responds monotonicaly to
according to the mode e¥ = . Fitting a second-order polynomia function of = to y will yidd a
positive coefficient for - and a negative coefficient for z2.
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Table 1. Regiona growing seasons.

Tables

Region Growing Season
Interior West March - November
Pecific Coast and Southwest  March - October
Greet Plains April - October
Mid-Atlantic February - October
Northeast March - October
Southcentral April - October
Southeast April - December
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Table 2. Summary datistics for the regional NPP models. Tabled vaues are percent variaion in
regional series explained by the fitted models (R? and R3)", Box-Ljung Q-statistic, and an

approximate p-vaue (p)? for Q.

Ocean Climate Modds | Teredtrid Climate Modds
Region R R Q p| B B Q p
Interior West 359 334 6.7 714|796 79.6 11.7 .30
Pacific Coast and Southwest 51.6 516 6.7 .75 | 70.9 709 7.6 .67
Great Plains 19.1 O 84 59| 876 813 2.6 .99
Mid-Atlantic 31.8 31.8 92 51| 812 812 6.6 .75
Southcentral 90 O 91 521 91.1 &893 16.6 .08
Northeast 98 0 76 .67 | 756 T4.1 74 .68
Southeast 0 0 13.1 17| 824 824 14.8 .14

! R? i percent variation explained by al significant predictive varigbles wheress B> isthe
percent variation explained by dl sgnificant predictive variables excluding trend components.
? The approximate p-vaueisp= P(x}, > @), where x 7, denotes a chi-square random
variable with & = 10 degrees of freedom.
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Table 3. Etimates of the ocean-atmosphere index coefficients for the Interior West, Pecific
Coast and Southwest, and Mid-Atlantic regions. Estimates were computed for each region
after diminating non-significant components. The ocean-atmosphere index identified in the first

row and the lag components are identified in the first column.

PDO SOl NAO

Season | Int. West Pac. SW | Int. West Pac. SW Mid-Atlantic | Mid-Atlantic
Gj 0.125 0.232 —0.201 —-0.162 0.191 0.295
W; . —0.306 | —0.081 —0.032 . —0.218
Gj1 . 0.384 | —0.049 —0.075 . —0.192
Wi . —0.037 | —0.004 0.017 . 0.070
Gjo . —0.010 | —0.170 —0.017 . 0.224
Wi . —0.070 0.021  —-0.001 . 0.003
Gj_g . —0.025 —0.157 0.066 . —0.349
Wi_3 . —0.222 | —0.027 —0.015 . 0.276
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Table 4. Coefficient estimates of linear trend derived from the regiona NPP modds. These

coefficients estimate change in standardized NPP per year after accounting for sgnificant

predictors of NPP (ocean-atmosphere indices or terrestrial climate variables). The estimated

annua percent change in the unstandardized NPP seriesis dso shown. Those estimates that

were not found to be Sgnificant a the o =0.05 level areidentified by an asterisk.

Ocean Climate Moddls  Terrestrid Climate Modds

. . Annud . Annud
Region Coefficient Change (%) Coefficient Change (%)
Interior West 0.065 0.102 0.032 0.051
Pacific Coast and Southwest  0.071 0.114 0.023 0.037
Great Plans 0.141 0.150 0.115 0.119
Mid-Atlantic 0.026* 0.032 0.048* 0.059
Southcentra 0.107 0.171 0.085 0.136
Northeast 0.119 0.077 0.067 0.043
Southeast 0.050* 0.073 0.047* 0.075
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Table 5. Number of pixels per region (n;) and regiona means of the coefficients of
determination (R and 123) for the ocean and terrestrial climate models. Only pixels for which
at least one of the predictor variables were sgnificant were used in computing the regiond
means. The number of pixes used to compute the regiona averages are shown in parentheses
for the ocean climate models. For the terrestriad climate models, the numbers of pixels used to

compute the regiona means were the same as number of pixels per region, and are not shown.

Ocean Climate Modds | Terrestrial Civatte Models
Region n; R? R R? R2
Interior West 23 17.0(14) 26.8(7) 69.5 64.5
Pacific Coast and Southwest 28 24.3 (14) 256(13) 64.0 65.0
Great Plains 33 11.9(25) 19.2(9) 70.3 70.9
Mid-Atlantic 7 89(4) 8.9 (4) 74.6 74.9
Southcentral 22 12.1 (15) 27.0 (4) 80.4 80.7
Northeast 12 14.7(11) 21.0 (4) 62.2 60.3
Southeast 10 136 (3) 13.6 (3) 85.6 85.6
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Figure 1. Regions and pixd locations. Pixels are numbered according to region, and are not

drawn to scae. Interior West=1, Pacific Coast and Southwest=2, Great Plains=3, Mid-

Atlantic=4, Southcentral=5, Northeast=6, Southeast=7.
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Figure2. A gdar plot of showing monthly means of absolute daily NPP. These vaues, showing
total amount of transfer of carbon (positive and negative), are plotted in lieu of NPP because
gar plots cannot accommodate both positive and negative vaues. January means are
positioned a 3 o'clock, and the calendar months advance in counterclockwise direction. The

length of the gtar radii for theis proportiona to monthly mean carbon exchange.
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Figure 3. Caendar monthly means of NPP plotted by region.
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Figure4. Percent variation (R%) in NPP explained by ocean climate modd s for each pixd.
The circle centers are located at pixel coordinates and circle radiusis proportiona to Rg. Of

the 135 pixes, 44 vaues of R% were non-zero, and the maximum vaue was 27.0%.
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Figure 5. Regiond averages of the temperature coefficients plotted againgt lag. Averages were
computed using only those coefficients that were found to be significant at the 0.05 levd inthe
pixel-scale NPP models. Lag 0 coefficients are associated with current growing season, lag 1

coefficients with the previous winter season, and so on.
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Figure 6. Regiond averages of the precipitation coefficients plotted againgt lag. Averages were
computed using only those coefficients that were found to be significant at the 0.05 levd inthe
pixel-scale NPP models. Lag 0 coefficients are associated with current growing season, lag 1

coefficients with the previous winter season, and so on.
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Figure 7. Regiond averages of the solar radiation coefficients plotted againgt lag. Averages
were computed using only those coefficients that were found to be sgnificant at the 0.05 levd in
the pixel-scale NPP models. Lag 0 coefficients are associated with current growing season, lag

1 coefficients with the previous winter season, and so on.
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